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• Authenticating users is the act of trying to verify that a user is who they claim to be


• We generally rely on the concept that if a user has the access information, then they are very 
likely to be authentic


• More sophisticated systems including biometrics and mutifactor authentication are based on 
the same reliance that if a user has the access items or abilities, they are authentic


• Limiting or controlling access can happen in stages, first at login, then at application launch, 
then application access, etc.


• This unit focuses on user access to the system via login and authentication of hosts and 
individuals using certificates

Access Control



NETS1028 LINUX SYSTEMS SECURITY - DENNIS SIMPSON ©2015-2021

• Logins typically happen on physical connections such as terminals, and on network connections 
using one of several possible remote access protocols


• /etc/security/access.conf specifies rules about where users can login from - see access.conf(5) 
or review the comments in the file


• /etc/securetty provides a simple mechanism to limit where root can log in, default file allows 
root to log in pretty much anywhere - see file for documentation

Login Access Control



NETS1028 LINUX SYSTEMS SECURITY - DENNIS SIMPSON ©2015-2021

• Passwords are usually required for a user to log in and run whatever shell they normally run


• Typing them can be avoided over the network using ssh keys (i.e. a long unguessable saved password 
(the private key) which is validated using a public key instead of comparison with a pre-stored hash)


• Access to services/running applications does not necessarily require a UNIX login, each service may 
have its own password mechanism and policy enforcement options, e.g. mail, web applications, 
database access, etc.


• The UNIX shell and applications can use pluggable authentication modules (PAM) to provide rules and 
mechanisms for user authentication


• http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html is an extensive guide to using 
Pluggable Authentication Modules (PAM) to provide, enhance, and enforce access-related security 
features of Linux

Passwords

http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
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• /etc/shadow file holds encrypted passwords for local unix accounts and has several fields which can 
be used to enforce a password policy for ordinary users - see shadow(5) and passwd(1) man pages


• Interesting password options for /etc/pam.d/login could include minlen, remember, obscure - see 
pam_unix(8) and pam.conf(5) man pages


• /etc/login.defs provides some additional control options to customize login access restrictions 
(retries, timeouts, logging, etc.) - see login.defs(5)


• libpam-pwquality provides a PAM module which significantly enhances the minimum allowed 
password quality


• Consider using a robust password cracking program to identify when users are using poor 
passwords, and set their password to expire when a poor one is found (e.g. passwd -w 3 -x 1 
username), this is a good task for a script

Password Management Tools
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• telnet is a very old protocol which allows creation of connections to ports on remote hosts 
using tcp


• telnet uses no compression, no encryption, no awareness of connection types, it simply 
connects your terminal and keyboard to a remote socket


• telnet is still a useful tool for testing and diagnostic purposes, but the telnetd daemon is 
extremely uncommon now and strongly discouraged

Legacy Remote Access
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• rsh/rcp are tools using a login-specific protocol to establish user access to their unix accounts 
on remote hosts


• rsh/rcp connect to a rlogind daemon on a remote site and check for environment files which 
might allow a user to connect to their login shell without entering a password for purposes of 
interactive access or file transfer


• rsh/rcp do not support compression or encryption and are not useful for other purposes, 
enabling the rlogind service is strongly discouraged

Legacy Remote Access
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• ssh/scp/sftp is the current preferred remote access toolset and supports much more than unix 
account access


• ssh tools support encryption and compression


• OpenSSH has both client and server side tools and configurations


• /etc/ssh holds the configuration files and is world accessible because client configuration files 
(ssh_config mainly) are kept there


• With your public key installed under your home directory on a server, any user who has your private 
key can log into the server without manual password entry - Protect your private key with a 
passphrase! - can also configure MFA


• See https://linux-audit.com/using-ssh-keys-instead-of-passwords/

SSH Remote Access

https://linux-audit.com/using-ssh-keys-instead-of-passwords/
https://linux-audit.com/using-ssh-keys-instead-of-passwords/
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• /etc/ssh/sshd_config is for the server daemon process


• options to consider include port number, host key files, logging config, logingracetime, 
permitrootlogin, pubkey authentication, allowusers, denyusers, maxauthtries, maxstartups, 
passwordauthentication


• /etc/ssh has host key files provided to clients during session establishment for host identity 
confirmation


https://help.ubuntu.com/lts/serverguide/openssh-server.html

SSH Server

https://help.ubuntu.com/lts/serverguide/openssh-server.html
https://help.ubuntu.com/lts/serverguide/openssh-server.html
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• SSL/TLS certificates identify an entity (typically a host or individual) and are signed, usually by 
a trusted authority


• Your trusted authority list is included with your OS and you can modify it (i.e. ca-certificates 
package)


• Certificates are used with public/private key pairs (the public key is in the certificate) to enable 
encryption


• SSH does not use certificates and keeps keys in different formats from SSL/TLS


• Certificates can be used to identify clients by applications that establish two-way authenticated 
TLS/SSL connections

Authentication

with Certificates
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• Private key decrypts things encrypted with public key


• Public key decrypts things encrypted with private key


• Key generation tools are part of ssh and openssl packages (ssh-keygen and openssl genpkey)


• easy-rsa package is a software package which is more user friendly for CA administration, 
typically installed in /etc/openvpn/easy-rsa

Public/Private Key Pairs
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• Root certificates are self-signed and are part of the public key infrastructure (PKI)


• Certificates must be signed by a trusted authority, or cannot be trusted for authentication


• Untrusted certificates can still be used for encryption, even if they cannot be trusted for 
authentication, most commonly used for things like SMTPS, IMAP4S, POP3S, intranet servers


• Creating a certificate involves creating a signing request and having it signed to produce the 
actual certificate

Certificates



NETS1028 LINUX SYSTEMS SECURITY - DENNIS SIMPSON ©2015-2021

• Begin by generating a private key if you do not already have one 
openssl genpkey -algorithm RSA -out /etc/ssl/private/mykey.pem -pkeyopt rsa_keygen_bits:2048


• Generate a request with embedded public key using your private key 
openssl req -new -key /etc/ssl/private/mykey.pem -out mycsr.csr


• Send the request to the Certificate Authority along with your authentication documentation 
and payment, and they will send back your certificate file


• Install your certificate file in /etc/ssl/certs and you can use it in your configuration files for 
services wanting to use SSL/TLS, identifying as the server named in the certificate

Requesting a Certificate
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• A certificate authority (CA) is an organization that validates signing requests and then signs them 
with the CA's private key, adding the CA info to the certificate


• Validation normally requires documentation of identity and authority from requester


• CAs charge for this service, and certificates expire so this is an ongoing business


• CAs can revoke certificates


• You can create your own CA trivially although no-one will trust your signed certificates unless they 
install your CA certificate as a trusted root certificate on their system - useful for intranet 
certificates


• This is the certificate creation method most commonly used when using certificates for client 
authentication

Certificate Authority
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• You can create a demo CA in /etc/ssl (e.g. cd /etc/ssl;/usr/lib/ssl/misc/CA.pl -newca)


• For each site you want certificates for, generate a key and csr (e.g. cd /etc/ssl;/usr/lib/ssl/misc/
CA.pl -newreq)


• Sign the csr with your CA certificate and key to produce their certificate (e.g. cd /etc/ssl;/usr/
lib/ssl/misc/CA.pl -sign)


• Send newcert.pem, newkey.pem to the requesting host to be installed and configured into 
whatever service will use the certificate (e.g. apache2)


• Make sure to install your CA certificate on clients that will be accessing the sites which use 
certificates you have signed

Private CA Example with CA.pl

http://CA.pl
http://CA.pl
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• Most browsers have their own trusted certificates list but users get warned about certificates which are not signed by 
a trusted root, this would defeat the purpose of using a better certificate than self-signed


• Various operating systems have distinct methods of installing trusted root certificates


• Installing a new CA certificate on Ubuntu starts with saving the CA certificate file to /usr/share/ca-certificates/
somefilename.crt and then dpkg-reconfigure ca-certificates


• Installing a new CA certificate on a Mac looks like this 
security add-trusted-cert -d -r trustRoot -k "/Library/Keychains/System.keychain" "/private/tmp/certs/certname.cer"


• Installing a new CA certificate on a Windows host takes different forms for the different OS versions as well as for 
different browsers, IIS-generated CSRs would also have a different command to sign them with the demoCA (e.g. cd /
etc/ssl;ca -policy policy_anything -notext -in clients.server.com.req -days 365 -out clients.server.com.crt)


• For a service provider, trusting client's certificates requires trusting the certificate signer, so the client certificate CA 
must be trusted by the server

Deploying a Private-CA Signed Certificate


