Testing, Loops and WMI
Summer 2022

Powershell

22222222222222222222222

Testing - if

 To test things, we can use the if statement

* We have one or more expressions to evaluate inside parentheses

 Multiple expressions can be used and prioritized with additional parentheses
* We have a script block to execute inside braces

 We can extend the test using elseif and else

 help about_if

https://technet.microsoft.com/en-us/library/hh847876.aspx?f=255&MSPPError=-2147217396

if Example

if ($ConSeats -gt $LibSeats) {
"Libs are Mad, bro"

}

elseif ($LibSeats -gt $ConSeats) {
"Cons are mad, bro"

}

else {

"Nobody happy, everyone mad"

}

 help about_comparison_operators

https://technet.microsoft.com/en-us/library/hh847759.aspx?f=255&MSPPError=-2147217396

Testing - Switch

« Switch is used for testing when you are executing one or more script blocks out of a group of
script blocks based on a value or collection of values

* When you are testing a collection, matching script blocks are executed separately for each
object in the collection

* break (terminate the switch) and continue (jump to the end of the script block) are available in
the script blocks

Switch Example

switch ($myvar) {
O { "myvar had a zero in it";continue }
32 { "myvar had a 32 in it";continue }
"rad" { "myvar was like, totally rad";continue }
$yourvar { "Cool! myvar had the same guts as yourvar!";continue }

{($_ -is [datetime]) -and ($_.dayofweek -It $yourvar.dayofweek)} { "Rats. myvar's someproperty was less than
yourvar's someproperty. You win.";continue }

default { "l dunno about you, but myvar had something in it | didn't expect and it freaked me out" }

}

 help about_switch

https://technet.microsoft.com/en-us/library/hh847750.aspx

Working With Bitfields Switch Example

* When you are working with complex objects, data is sometimes encoded into bitfields

 This example demonstrates testing bit values to produce human readable output
FILE: printers.psl

Get-WmiObject -class win32 printer |
select name,
@{n="Default?";e={1f($.attributes -band 4){Sattr="default"};Sattr}},
@{n="Shared?";e={1f($.attributes -band 8){Sattr="shared"};Sattr}},
@{n="Status";e={switch($.printerstatus){l{S$Sstat="other"}
2{S$stat="unknown"}
3{Sstat="1dle"}
4{Sstat="printing"}
5{$stat="warming up"}
6{$stat="stopped printing"}
7{Sstat="offline"}};

Sstat}}
ft -AutoSize

Looping On A Condition

 While and Until can be used to repeat a script block based on the result of an expression

 Putting Do at the start of a script block and While or Until after the end of it causes the script
block to be run once before the condition is evaluated

 Until cannot be used without Do, but While can
while ($var -1t 5) {$var++ ; $var}
do {$var++:$var} while ($var -It 5)

do {$var--;$var} until ($var -gt 1)

While Examples

while ($intf_speed -It $minToMakeMeHappy) { change-providers }
while (! $forgiven) { buy-flowers }

do {
$annoyed = read-host -prompt “Are you annoyed yet [y/N]?”
} while ($annoyed -notlike "y*")

$chocolates = 6

while ($chocolates -gt 0) {
"Yum!" ; $chocolates--
sleep 2

}

For/Foreach

 foreach is used to execute a script once for each object in a collection

 for is used when you have an initial command, a test, and a loop command to perform

The initial command executes
— The test is performed and if it is true
The script block executes

The loop command executes

X !

For/Foreach Examples

foreach -inputobject $collection {
"The current object looks kinda like a " + $_.gettype().name

}

$objects | foreach-object {
"Wow, | got a" + $_ + "from the pipeline!" }

for ($counter = 0; $doghappy -ne $true; $counter++) {
pet-dog
feed-dog

}

"Dog requires level $counter attention to be happy"

Foreach Example

$totalcapacity = 0O
get-wmiobject -class win32_physicalmemory |

foreach {
new-object -TypeName psobject -Property @1

Manufacturer = $.manufacturer
"Speed(MHz)" = $_.speed
"Size(MB)" = $_.capacity/TImb
Bank = $.banklabel

Slot = $_.devicelocator

}
$totalcapacity += $_.capacity/Imb

H
ft -auto Manufacturer, "Size(MB)", "Speed(MHz)", Bank, Slot

"Total RAM: ${totalcapacity}MB "

Working Over The Network

* Powershell can run cmdlets over the network, executing them on remote hosts

* The remote host must enable remote access, and it only works between 2 computers running
Windows

* The -ComputerName parameter is used to specify the remote computer to execute the cmdlet
on

* Alternately, you can use psexec to remotely execute simple commands on remote machines

 See https://4sysops.com/archives/psexec-vs-the-powershell-remoting-cmdlets-invoke-
command-and-enter-pssession/ for more information

https://4sysops.com/archives/psexec-vs-the-powershell-remoting-cmdlets-invoke-command-and-enter-pssession/
https://4sysops.com/archives/psexec-vs-the-powershell-remoting-cmdlets-invoke-command-and-enter-pssession/
https://4sysops.com/archives/psexec-vs-the-powershell-remoting-cmdlets-invoke-command-and-enter-pssession/

Get-WMIObject

« Get-WMIObject retrieves many types of system information objects, gwmi is an alias for get-
wmiobject

« gwmi -list shows a list of the retrievable objects, add a word to the command to limit the output
based on the class name, * is allowed in the word
e.g gwmi -list *adapter*

« WMIExplorer and the online resources from blackboard are also good places to discover useful
WMI classes

« WMI is widely used, but deprecated in favour of CIM, which uses the Get-ClIMInstance cmdlet
and the same WMI classes as well as some CIM versions of those classes

Some Interesting WMI Classes

e win32_computersystem
win32_operatingsystem
win32_bios

e win32_processor
win32_cachememory
win32_physicalmemory

 win32_logicaldisk
win32_diskdrive
win32_diskpartition

e win32_videocontroller
win32_desktopmonitor

e win32_networkadapter
win32_networkadapterconfiguration

e win32_printer

e win32_usbcontrollerdevice

Finding Related WMI Objects

* WMI objects have a GetRelated() method to find related WMI objects for the same device or resource as the one you
already have

« Use gwmi -class someclassnamel|% {$_.getrelated().__CLASS} to see what related objects exist for someclassname

* You can then use new-object or select-object to build objects that use properties and methods from multiple WMI objects

$adapters = Get-WmiObject Win32 NetworkAdapter
$filteredadapters = $adapters | where-object {$.adaptertype -match "ethernet" -and $_.netenabled -eq $true}
$myNetworkObjects = $filteredadapters |
Foreach { $adapter = $_;
$nac = $adapter.GetRelated("Win32_NetworkAdapterConfiguration");
New-Object PSObject -Property @{Name=$adapter.name;
ConnectionName=%adapter.netconnectionid;
IPAddress=%nac.ipaddress;

Gateway=%nac.defaultipgateway;
"Speed(MBps)" = $adapter.speed / 1000000

}
}

$myNetworkObjects | format-table Name, ConnectionName, IPAddress, Gateway, "Speed(Mbps)"

Finding Related CIM Objects

* You can use Get-CIMAssociatedlnstance to find other CIM class objects for the same device or resource as the one

you already have (e.g. Get-ClMInstance CIM_LogicalDisk | Get-CIMAssociatedlnstance -ResultClassName
Win32 DiskPartition)

¢ Use Get-CIMInstance somecimobject | Get-CIMAssociatedlnstance |% {$_.CreationClassName} to get a list of the
related classes for somecimobject

$adapters = Get-ClMInstance CIM_NetworkAdapter

$filteredadapters = $adapters | where-object {$_.adaptertype -match "ethernet" -and $_.netenabled -eq $true}
$myNetworkObjects = $filteredadapters |

foreach { $adapter = $_;
$nac = $adapter | Get-CIMASsociatedInstance -resultclassname Win32__NetworkAdapterConfiguration;
New-Object PSObject -Property @{Name=%$adapter.name;
|IPAddress=$nac.ipaddress;
Gateway=%$nac.defaultipgateway;
ConnectionName=%$adapter.netconnectionid;
"Speed(Mbps)"=$adapter.speed / 1000000

}
}

$myNetworkObijects | format-table Name, ConnectionName, IPAddress, Gateway, "Speed(Mbps)"

Lab 4 - Loops and WMI/CIM

