
©DENNIS SIMPSON 2013-2022

Powershell

Testing, Loops and WMI

Summer 2022

©DENNIS SIMPSON 2013-2022

• To test things, we can use the if statement

• We have one or more expressions to evaluate inside parentheses

• Multiple expressions can be used and prioritized with additional parentheses

• We have a script block to execute inside braces

• We can extend the test using elseif and else

• help about_if

Testing - if

https://technet.microsoft.com/en-us/library/hh847876.aspx?f=255&MSPPError=-2147217396

©DENNIS SIMPSON 2013-2022

if ($ConSeats -gt $LibSeats) { 
 "Libs are Mad, bro"  
} 
elseif ($LibSeats -gt $ConSeats) { 
 "Cons are mad, bro"  
} 
else { 
 "Nobody happy, everyone mad"  
}

• help about_comparison_operators

if Example

https://technet.microsoft.com/en-us/library/hh847759.aspx?f=255&MSPPError=-2147217396

©DENNIS SIMPSON 2013-2022

• Switch is used for testing when you are executing one or more script blocks out of a group of
script blocks based on a value or collection of values

• When you are testing a collection, matching script blocks are executed separately for each
object in the collection

• break (terminate the switch) and continue (jump to the end of the script block) are available in
the script blocks

Testing - Switch

©DENNIS SIMPSON 2013-2022

switch ($myvar) {

0 { "myvar had a zero in it";continue }

32 { "myvar had a 32 in it";continue }

"rad" { "myvar was like, totally rad";continue }

$yourvar { "Cool! myvar had the same guts as yourvar!";continue }

{($_ -is [datetime]) -and ($_.dayofweek -lt $yourvar.dayofweek)} { "Rats. myvar's someproperty was less than
yourvar's someproperty. You win.";continue }

default { "I dunno about you, but myvar had something in it I didn't expect and it freaked me out" }

}

• help about_switch

Switch Example

https://technet.microsoft.com/en-us/library/hh847750.aspx

©DENNIS SIMPSON 2013-2022

• When you are working with complex objects, data is sometimes encoded into bitfields

• This example demonstrates testing bit values to produce human readable output

FILE: printers.ps1

Get-WmiObject -class win32_printer | 
 select name, 
 @{n="Default?";e={if($_.attributes -band 4){$attr="default"};$attr}}, 
 @{n="Shared?";e={if($_.attributes -band 8){$attr="shared"};$attr}}, 
 @{n="Status";e={switch($_.printerstatus){1{$stat="other"} 
 2{$stat="unknown"} 
 3{$stat="idle"} 
 4{$stat="printing"} 
 5{$stat="warming up"} 
 6{$stat="stopped printing"} 
 7{$stat="offline"}}; 
 $stat}} | 
 ft -AutoSize

Working With Bitfields Switch Example

©DENNIS SIMPSON 2013-2022

• While and Until can be used to repeat a script block based on the result of an expression

• Putting Do at the start of a script block and While or Until after the end of it causes the script
block to be run once before the condition is evaluated

• Until cannot be used without Do, but While can

while ($var -lt 5) {$var++ ; $var}

do {$var++;$var} while ($var -lt 5)

do {$var--;$var} until ($var -gt 1)

Looping On A Condition

©DENNIS SIMPSON 2013-2022

while ($intf_speed -lt $minToMakeMeHappy) { change-providers }

while (! $forgiven) { buy-flowers }

do { 
 $annoyed = read-host -prompt “Are you annoyed yet [y/N]?” 
} while ($annoyed -notlike "y*")

$chocolates = 6 
while ($chocolates -gt 0) { 
 "Yum!" ; $chocolates-- 
 sleep 2 
}

While Examples

©DENNIS SIMPSON 2013-2022

• foreach is used to execute a script once for each object in a collection

• for is used when you have an initial command, a test, and a loop command to perform 

For/Foreach

The initial command executes 

 The test is performed and if it is true 

 The script block executes 

 The loop command executes

©DENNIS SIMPSON 2013-2022

• foreach -inputobject $collection { 
 "The current object looks kinda like a " + $_.gettype().name 
}

• $objects | foreach-object { 
 "Wow, I got a " + $_ + "from the pipeline!" }

• for ($counter = 0; $doghappy -ne $true; $counter++) { 
 pet-dog 
 feed-dog 
} 
"Dog requires level $counter attention to be happy"

For/Foreach Examples

©DENNIS SIMPSON 2013-2022

$totalcapacity = 0 
get-wmiobject -class win32_physicalmemory |  
foreach { 
 new-object -TypeName psobject -Property @{ 
 Manufacturer = $_.manufacturer 
 "Speed(MHz)" = $_.speed 
 "Size(MB)" = $_.capacity/1mb 
 Bank = $_.banklabel 
 Slot = $_.devicelocator 
 } 
 $totalcapacity += $_.capacity/1mb 
} | 
ft -auto Manufacturer, "Size(MB)", "Speed(MHz)", Bank, Slot 
"Total RAM: ${totalcapacity}MB "

Foreach Example

©DENNIS SIMPSON 2013-2022

• Powershell can run cmdlets over the network, executing them on remote hosts

• The remote host must enable remote access, and it only works between 2 computers running
Windows

• The -ComputerName parameter is used to specify the remote computer to execute the cmdlet
on

• Alternately, you can use psexec to remotely execute simple commands on remote machines

• See https://4sysops.com/archives/psexec-vs-the-powershell-remoting-cmdlets-invoke-
command-and-enter-pssession/ for more information

Working Over The Network

https://4sysops.com/archives/psexec-vs-the-powershell-remoting-cmdlets-invoke-command-and-enter-pssession/
https://4sysops.com/archives/psexec-vs-the-powershell-remoting-cmdlets-invoke-command-and-enter-pssession/
https://4sysops.com/archives/psexec-vs-the-powershell-remoting-cmdlets-invoke-command-and-enter-pssession/

©DENNIS SIMPSON 2013-2022

• Get-WMIObject retrieves many types of system information objects, gwmi is an alias for get-
wmiobject

• gwmi -list shows a list of the retrievable objects, add a word to the command to limit the output
based on the class name, * is allowed in the word 
e.g gwmi -list *adapter*

• WMIExplorer and the online resources from blackboard are also good places to discover useful
WMI classes

• WMI is widely used, but deprecated in favour of CIM, which uses the Get-CIMInstance cmdlet
and the same WMI classes as well as some CIM versions of those classes

Get-WMIObject

©DENNIS SIMPSON 2013-2022

• win32_computersystem 
win32_operatingsystem 
win32_bios

• win32_processor 
win32_cachememory 
win32_physicalmemory

• win32_logicaldisk 
win32_diskdrive 
win32_diskpartition

• win32_videocontroller 
win32_desktopmonitor

• win32_networkadapter 
win32_networkadapterconfiguration

• win32_printer

• win32_usbcontrollerdevice

Some Interesting WMI Classes

©DENNIS SIMPSON 2013-2022

• WMI objects have a GetRelated() method to find related WMI objects for the same device or resource as the one you
already have

• Use gwmi -class someclassname|% {$_.getrelated().__CLASS} to see what related objects exist for someclassname

• You can then use new-object or select-object to build objects that use properties and methods from multiple WMI objects

Finding Related WMI Objects

$adapters = Get-WmiObject Win32_NetworkAdapter
$filteredadapters = $adapters | where-object {$_.adaptertype -match "ethernet" -and $_.netenabled -eq $true}
$myNetworkObjects = $filteredadapters |
 Foreach { $adapter = $_;
 $nac = $adapter.GetRelated("Win32_NetworkAdapterConfiguration");
 New-Object PSObject -Property @{Name=$adapter.name;
 ConnectionName=$adapter.netconnectionid;
 IPAddress=$nac.ipaddress;
 Gateway=$nac.defaultipgateway;
 "Speed(MBps)" = $adapter.speed / 1000000
 }
 }
$myNetworkObjects | format-table Name, ConnectionName, IPAddress, Gateway, "Speed(Mbps)"

©DENNIS SIMPSON 2013-2022

• You can use Get-CIMAssociatedInstance to find other CIM class objects for the same device or resource as the one
you already have (e.g. Get-CIMInstance CIM_LogicalDisk | Get-CIMAssociatedInstance -ResultClassName
Win32_DiskPartition)

• Use Get-CIMInstance somecimobject | Get-CIMAssociatedInstance |% {$_.CreationClassName} to get a list of the
related classes for somecimobject

Finding Related CIM Objects

$adapters = Get-CIMInstance CIM_NetworkAdapter 
$filteredadapters = $adapters | where-object {$_.adaptertype -match "ethernet" -and $_.netenabled -eq $true} 
$myNetworkObjects = $filteredadapters |
 foreach { $adapter = $_; 
 $nac = $adapter | Get-CIMASsociatedInstance -resultclassname Win32_NetworkAdapterConfiguration; 
 New-Object PSObject -Property @{Name=$adapter.name; 
 IPAddress=$nac.ipaddress; 
 Gateway=$nac.defaultipgateway; 
 ConnectionName=$adapter.netconnectionid; 
 "Speed(Mbps)"=$adapter.speed / 1000000 
 } 
 } 
$myNetworkObjects | format-table Name, ConnectionName, IPAddress, Gateway, "Speed(Mbps)"

©DENNIS SIMPSON 2013-2022

Lab 4 - Loops and WMI/CIM

