
©DENNIS SIMPSON 2013-2022

Loops and Arrays

COMP2101

Summer 2022

©DENNIS SIMPSON 2013-2022

• An action list can be executed repeatedly (known as a loop) based on the success or failure of a
testlist using the while command

• The break or continue commands can be used in the action list to get out of a loop early

• break jumps to the done command and continues the script past the loop

• continue jumps back to the while command to redo the testing list

Script Block Looping

while testlist; do

	 actionlist

done

©DENNIS SIMPSON 2013-2022

Looping With For

• Looping in a script using for

• Performing a task a set number of
times

• Doing a task with each item in a list of
data items

https://chortle.ccsu.edu/assemblytutorial/Chapter-18/ass18_10.html

https://stackoverflow.com/questions/20580028/flowchart-for-each-loop-loop-without-variable-increment

©DENNIS SIMPSON 2013-2022

• The for command allows repeated execution of a list with each word from a word list

• The for command specifies a variable name

• The first word in the list is put into the variable and the action list is run

• Then the next word in the list is put into the variable and the action list is run, until there are no
more words to get from the list

For Command

for varname in wordlist; do

	 list

done

©DENNIS SIMPSON 2013-2022

• The for command allows repeated execution of an action list controlled by evaluating 2 commands and a test
expression, and is commonly used for loops that use a counter

• The initial command is optional, but when present it is run once

• The test expression is tested before the action list executes

• The loop command is optional, but when present it runs after action list execution

• After the loop command runs, the test is done to see whether to execute the action list and loop command
again

For Command

for ((initial command; test expression; loop command)); do

	 list

done

©DENNIS SIMPSON 2013-2022

Matching Patterns With Case

• Multiple reference value tests for a
single variable - using case

• Command line arguments - adding
options to your scripts

https://flylib.com/books/en/3.161.1.128/1/

©DENNIS SIMPSON 2013-2022

• The case command allows execution of a list based on the
value of a variable or word

• Very commonly used to process the special variables $1, $2,
$3, etc.

• It allows comparing a variable's contents to multiple
reference values or patterns

Case Command

case $var in

	 pattern)

	 	 list

	 	 ;;

	 pattern | pattern)

	 	 list

	 	 ;;

	 *)

	 	 list

	 	 ;;

esac

©DENNIS SIMPSON 2013-2022

• Any command may have options and arguments

• The command line to run a script is accessible by the script, using the special variables $0, $1, $2,
etc.

• $0 holds the command itself and $# holds a count of how many words are on the command line
other than the command itself

• $1, $2, $3, etc. hold each of the remaining words from the command line

• On a bash command line, words are space-separated sequences of characters

• Quoting and the escape character can be used to create user-desired word boundaries on the
command line (e.g. "My File" becomes a single word)

Command Line Arguments

©DENNIS SIMPSON 2013-2022

• A loop can be used to cycle through the available
command line arguments and interpret what is
there

• We can use shift to renumber the command line
variables each time through the loop

• Requiring arguments of the form -x or --option-
name is known as using named arguments

• The case statement is better than the if statement
for this

Command Line Processing

while [$# -gt 0]; do

	 case "$1" in

	 -h | --help)

	 	 echo "Usage: $(basename $0) [-h|--help]"

	 	 exit

	 	 ;;

	 *)

	 	 echo "Unrecognized argument '$1'"

 exit 1

	 	 ;;

	 esac

	 shift

done

Command line processed

Named arguments recognized and saved as needed

©DENNIS SIMPSON 2013-2022

Arrays

• Handling collections of data items using
arrays

• Debugging scripts

https://www.freecodecamp.org/news/sorting-algorithms-explained-with-examples-in-python-java-and-c/

https://i.pinimg.com/originals/7f/be/ff/7fbeffd99fa54411109c6f411cd934a9.jpg

©DENNIS SIMPSON 2013-2022

• Arrays allow us to group data items and still operate on them as individual items

• Elements of an array are uniquely identified by an index integer starting at 0

• Elements of an array can be accessed using the varname[index] syntax

• Negative indices count backwards from the end of the array

• @ and * can be used as indices to include all array elements

• # can be used to obtain a count of elements in an array

Array Variables

arrayvar=(a b c)

echo ${arrayvar[0]} ${arrayvar[-1]}

echo ${arrayvar[@]} ${#arrayvar[@]}

INDEX DATA
0 a
1 b
2 c

©DENNIS SIMPSON 2013-2022

• Sometimes you need one or more data items for a script and want it on the command line, but don't want the user to have to put option
letters or names in front of it (e.g. fixmydir dirname1 dirname2)

• In your command line processing, assign things found on the command line without a leading dash to a variable which stores the list of
data items from the command line

• Then you can examine that variable to see what the user gave you to work on

Unnamed Arguments

declare -a stuffToProcess

while [$# -gt 0]; do

	 case "$1" in

	 -h | --help)

	 	 echo "Usage: $0 [-h] [stuff ...]"

	 	 exit 0

	 	 ;;

	 *)

	 	 stuffToProcess+=("$1")

	 	 ;;

	 esac

	 shift

done

[${#stuffToProcess[@]}] && echo "Will do work on ${stuffToProcess[@]} (${#stuffToProcess[@]} items)"

©DENNIS SIMPSON 2013-2022

• Associative arrays (sometimes called hashes) use a string as an index

• They must be declared before being used

• They are useful for storing structured data

Associative Arrays

declare –A foo

foo=([key1]="data1" [key2]="data2" [key3]="data3")

echo ${foo[key1]}

echo ${foo[@]}

echo ${!foo[@]}

INDEX DATA
key1 data1
key2 data2
key3 data3

©DENNIS SIMPSON 2013-2022

• arrays and looping

• fourth challenge script

Working with bigger data

