
©DENNIS SIMPSON 2013-2022

bash Execution Control

COMP2101 
Summer 2022



©DENNIS SIMPSON 2013-2022

Conditional Execution and Testing

• Command Lists 

• Conditional Execution Operators 

• Exit Status 

• Test Command



©DENNIS SIMPSON 2013-2022

• A command list is a list of one or more commands on a single command line in bash 

• Putting more than one command on a line requires placement of an operator between the 
commands so that bash can tell them apart 

• Operators also tell bash the rules for running the command sequence 

• The ; operator between commands tells bash to run the first command and when it finishes to 
run the next one without regard for the success or failure of the first command

Command Lists

echo -n "Number of non-hidden files in this directory: " ; ls | wc -l 
echo -n "Process count by username:" ; ps -eo user --no-headers | sort | uniq -c 
echo -n "eno1 interface address:" ; ip a s eno1 | grep -w inet | awk '{print $2}' 



©DENNIS SIMPSON 2013-2022

• When a command is run, it may fail and cause other commands to have problems or become 
unnecessary 

• A command may need to be run only under specific circumstances 

• A command may depend on another command finishing properly before it can be run 

• In order to automate these things, bash provides operators to control the execution of 
commands in lists

Bash Conditional Execution



©DENNIS SIMPSON 2013-2022

• Every command that runs produces an exit status when it ends 

• That exit status can be used to control whether or not the next command in a list should run 

• The exit status of a pipeline is the exit status of the last command that ran in the pipeline 

• When a script is run, it also produces an exit status 

• An exit status of successful is the default when a script ends by running out of commands to run 

• You can force a script to exit immediately with the default status of successful by using the exit command in the 
script 

• To set an unsuccessful exit, put a non-zero number on the exit command line e.g. exit 1 

• Any time a command might fail and cause problems, the script should be doing something to recognize and deal with 
the possible failure

Exit Status



©DENNIS SIMPSON 2013-2022

• To use exit status as the control over whether to continue running commands in a list, insert a conditional operator between the 
commands 

• Putting the && operator between two commands on one line creates a command list that only runs the second command if the 
first command succeeds 

• Putting the || operator between two commands on one line creates a command list that only runs the second command if the first 
command fails 

• Multiple conditional operators in a command list works, but may need parentheses to specify which command's exit status is used 
to control which subsequent command(s) in the list making it hard to read and debug - this is not commonly done for this reason 

• To use both && and || on a command line, put the && first but consider using an if command instead for readability

Conditional Command List

cd /flooble || exit 1 
grep -q dennis /etc/passwd && echo "User dennis is in the passwd file" 
ps -eo user | grep -q dennis || echo "User dennis has no processes running" 
sudo find / -user dennis -ls || echo "User dennis owns no files on this system"



©DENNIS SIMPSON 2013-2022

• The test command evaluates an expression and sets its exit status based on whether the 
expression evaluates as true or false 

• The exit status of the test command can be used to control whether other commands run, in 
effect running commands based on the result of the test

Test Command

test -d ~ && echo "I have a home directory" 
test -f myfile || echo "myfile is missing" 
test -d ~/Downloads || (mkdir ~/Downloads && echo "Made Downloads dir")



©DENNIS SIMPSON 2013-2022

• Conditional execution operators and pipelines can make command lines get quite long 

• These are easier to read and debug if each command is separated out onto its own line 

• When they are they last character on a line, most operators will cause bash to continue to the 
next line as a single command list, semicolon is a notable exception 

• When using continuation lines like this, it is good practice to indent the continuation lines to 
make it clear to the reader that they are continuation lines

Long command lines

mkdir foo && 
   echo "Made foo" || 
   echo "Failed to make foo"

echo -n "eno1 interface address:" 
ip a s eno1 | 
    grep -w inet | 
    awk '{print $2}' 



©DENNIS SIMPSON 2013-2022

Test Expressions

• Testing data 

• Testing files



©DENNIS SIMPSON 2013-2022

• The test command evaluates an expression and sets its exit status based on whether the 
expression evaluates as true or false 

• The test command can also be run using the [ alias, which uses a ] to mark the end of the 
expression on the command line 

• Multiple expressions can be evaluated by putting -a (and) or -o (or) between expressions

Test Command

test -d /etc && echo "/etc exists" 
[ -d /etc ] && echo "/etc exists" 
[ -d /etc -a -r /etc ] && echo "/etc exists and is readable"



©DENNIS SIMPSON 2013-2022

• The following are commonly used file tests, although there are more not included here 

• -e filename : filename exists as any kind of filesystem object 

• -f filename : filename exists and is a regular file (can hold data) 

• -d filename : filename exists and is a directory 

• -r filename : filename exists and is readable by whoever is doing the test 

• -w filename : filename exists and is writable by whoever is doing the test 

• -h filename : filename exists and is a symbolic link 

• -s filename : filename exists and is not empty 

• Putting ! in front of the test operator ( the letter with a dash in front of it ) inverts the test

File Testing



©DENNIS SIMPSON 2013-2022

• Test is generally used to either test data (usually in variables), or to test file attributes 

• Test expressions may test single things for some characteristic, or attribute - this is known as 
a unary test 

• Test expressions may compare two things - this is known as a binary test 

• Unary test expressions take the form -x thing, where -x is the test operator specifying what 
kind of test to perform - characteristics testing 

• Binary test expressions take the form thing1 operator thing2 where operator tells the test 
command what kind of comparison to perform - comparison testing 

• Putting ! in front of the test operator inverts the test

Test Expressions



©DENNIS SIMPSON 2013-2022

• The only unary operator that checks a variable is -v variablename which is true if the variable 
exists and false if it doesn't 

• Text strings can be tested to see if they have no text in them with -z "sometext" or have some 
text with -n "sometext" 

• Since it would make no sense to do such a test on literal text, use some kind of dynamic data 
with the -n or -z tests

Unary Operators



©DENNIS SIMPSON 2013-2022

• Text strings can be compared using the following operators 

• "string1" = "string2" is true if the two strings are identical 

• "string1" != "string2" is true if the two strings are not identical 

• Strings consisting of digits are compared as text by these operators, not as numbers

Binary Operators For Text



©DENNIS SIMPSON 2013-2022

• To compare numbers, there are several binary test operators available 

• X -eq Y is true if X and Y are the same number 

• X -ne Y is true if X and Y are not the same number 

• X -lt Y is true if X is numerically less than Y 

• X -gt Y is true if X is numerically more than Y 

• X -le Y is true if X is numerically less than Y or X is equal to Y 

• X -ge Y is true if X is numerically more than Y or X is equal to Y

Binary Operators For Numbers



©DENNIS SIMPSON 2013-2022

• When a child process exits, the shell can retrieve the child's 
exit status from the special variable ? 

• It can be used in a test expression when testing whether 
the immediately preceding command failed 

• An exit status of zero means success 

• Scripts can set their exit status with the exit command e.g. 
exit 3

Testing Command Success

grep -q '^dennis:' /etc/passwd 
if [ $? -ne 0 ]; then 
  echo "Adding user" 
  sudo adduser dennis 
else 
  echo "user already exists" 
fi



©DENNIS SIMPSON 2013-2022

Conditional Script Blocks

• Running multiple commands based on a 
test - using if



©DENNIS SIMPSON 2013-2022

• Scripts commonly can evaluate situations and make simple decisions about actions to take 

• Simple evaluations and actions can be accomplished using && and || 

• Complex evaluations and multi-step actions are better handled using more sophisticated 
execution control commands

Bash Execution Control



©DENNIS SIMPSON 2013-2022

• A list of action commands can be run, or not run, based on the 
success or failure of a testing command list 

• The test command can evaluate expressions, so it is the most 
common command for the testlist 

• An arbitrary number of testlist/actionlist elifs can be used to take 
one of several actions based on multiple tests 

• A default actionlist to run if no testlists are successful can be 
included by using else

Conditional Script Block Execution

if testlist; then 
    actionlist 
elif testlist; then 
    actionlist 
else 
    actionlist 
fi

if [ expr ]; then 
    actionlist 
fi



©DENNIS SIMPSON 2013-2022

• data and command testing 

• script blocks 

• unary and binary operators 

• third challenge script

Controlling Execution


