
©DENNIS SIMPSON 2013-2022

Powershell

Working with Objects

Summer 2022

©DENNIS SIMPSON 2013-2022

• Many commands from Linux appear to be available in Powershell

• They are actually aliases or functions which have Linux names and
actually run Powershell commands

• So these commands look familiar, but work differently from the
commands they are supposed to look like

• Knowing what objects are and how to work with them is required to use
even these commands

•

Familiar Commands, Unfamiliar Data
clear

man

echo

cd

ls

cat

more

head

tail

cp

mv

rm

mkdir

rmdir

history

kill

diff

lp

mount

ps

pwd

sleep

sort

tee

curl

wget

©DENNIS SIMPSON 2013-2022

• Working with files to do simple things can feel similar to Linux bash, but it is not

• cd is used to change your directory but unlike bash, which takes you to your home
directory when you just enter cd without a target, powershell does not change directory
unless you give it a target, ~ or $home can be used to specify your home directory

• ls will list files with a similar output to the old DOS dir command, but behaves differently
and produces different output from the actual ls command, and requires using object
collections and a different way of thinking to work with anything but a simple list of a
single directory

• In general, it is best to use the Powershell cmdlets instead of these Linux-like commands
to avoid confusion and unexpected results

• Either way, the output from Powershell commands is always zero or more objects, never
just plain text, and you may not have any use for the objects they produce

Basic File Handling

set-location 
get-childitem 
new-item 
remove-item 
move-item 
copy-item 
get-content 
set-content 
add-content

©DENNIS SIMPSON 2013-2022

• An object is a data structure residing in memory

• That structure has places for code and data and other things

• The code, data, and other things in an object are called members of the object

• Objects can be one object or a collection (a.k.a. array) of objects

Objects

©DENNIS SIMPSON 2013-2022

• Code we access in an object is called a method

• Data we access in an object is called a property

• Properties are objects or collections of objects

• Data in Powershell has a type which guides us in handling that data

• Powershell objects may have a default output format or may have multiple default output formats or
may have no default output format

• BEWARE: Powershell object display is wonky and unpredictable, so always explicitly control your
output in scripts and always make your scripts only produce one type of output object whenever
possible

Object Members

©DENNIS SIMPSON 2013-2022

• Objects get created by cmdlets

• That cmdlet can decide to release the object, or can pass it to the shell as output, which by
default powershell will format and display as text using unpredictable rules

• Objects continue to exist as long as anything refers to them, objects we want to keep are
usually assigned to variables, which puts the object reference (sometimes called a handle) into
the variable

• We can get the handle for any object by putting () around the object or a pipeline that creates
one or more objects

Working With Objects

©DENNIS SIMPSON 2013-2022

• Objects produced by cmdlets are normally displayed by the shell, some commands produce
objects you might not expect (e.g. mkdir)

• Object display output can be sent to files using redirection

• >, >> are similar to bash output redirection, they discard the object handle(s) after writing the
object's display output to a file

• The | symbol creates a pipeline to transfer objects from one cmdlet to another

• The out- cmdlets can be used to send objects, or object display output, to other places like file,
null, or printer

Objects On The Command Line

©DENNIS SIMPSON 2013-2022

• Create a string object, let the shell display it 
"my string object"

• Create a collection of objects, let the shell display it, then try saving a similar collection to a file with output redirection 
"my object1","my object2","my object3" 
"turkey","chicken","mouse","string" > $home/desktop/food

• Use > to send the display output of a get-date cmdlet to a file, then examine the file 
get-date > $home/desktop/mydate.txt

• Use mkdir to make to make directories in different ways 
mkdir a 
mkdir a b c 
mkdir a,b,c 
mkdir "a","b","c" 
mkdir ("a","b","c")

• Use the out-null cmdlet to discard the object produced by mkdir 
mkdir d | out-null

Objects Examples

©DENNIS SIMPSON 2013-2022

• By default, when a command produces objects and does not specify a destination for them,
Powershell displays them on the screen

• Objects can be sent to other destinations

• out-null discards objects

• out-file saves objects to files in a more sophisticated way than the > redirect

• out-gridview display objects in a spreadsheet-style popup window

• out-printer sends objects to a print queue

Out Verb Cmdlets

©DENNIS SIMPSON 2013-2022

• get-process | format-table * -autosize > procs.txt

• get-process |  
format-table * -autosize |  
out-file -width 300 wideprocs.txt

• get-process | out-null

• get-process | out-gridview

• get-process | select * | out-gridview

Out Verb Cmdlets Exercises

©DENNIS SIMPSON 2013-2022

• Like bash, Powershell supports aliases and functions

• Functions in Powershell can be simple like in bash, or can be written to behave the same as full
cmdlets

• Many aliases and functions are predefined by Powershell for you

• Many basic UNIX command names are aliased or implemented in functions

• Beware when using variables in functions, existing local variables get copied to function
variables

Aliases and Functions

©DENNIS SIMPSON 2013-2022

• Use get-alias to see the list of predefined aliases, how many UNIX commands can you spot in the
list?

• Note that not all cmdlets produce the same output or work the way you might expect for the
aliased UNIX commands, e.g. ls, rm, mkdir

• Aliases support command line parameters, try 
mkdir $home/desktop/mynewtmpdir

• Create an alias for notepad.exe called np 
new-item -path alias:np -value notepad

• Remember when scripting to discard objects the user wouldn't expect to see

Aliases Examples

©DENNIS SIMPSON 2013-2022

• You can list the defined functions 
ls function:

• You can view the content (code) of a function 
gc function:more

• You can create trivial functions 
function myfunc { "this is my function" } 
myfunc 
ls function: 
gc function:myfunc

Functions Examples

©DENNIS SIMPSON 2013-2022

• A pipeline can accept object handles from a cmdlet and pass them to another cmdlet

• A command line can have multiple pipes

• Cmdlets in a pipeline can choose whether or not to use objects passed to them by a pipe, to
pass them along in the pipe, or to drop their handles

• Any objects produced by the last cmdlet in a pipeline get displayed by the shell

Pipelines

©DENNIS SIMPSON 2013-2022

• "c:/windows" | ls

• get-process | more

• get-process | sort cpu | more

• mkdir c:/mytmp5 | out-null

Pipeline Examples

©DENNIS SIMPSON 2013-2022

• Pipe an object to the get-member cmdlet to display a list of the members in an object that we can
retrieve, store, or invoke

• Every object has a type, get-member shows us the type of the object

• Properties can be retrieved and sometimes changed, similar in concept to variables

• We can invoke methods in objects to cause objects to perform some task for us

• Besides properties and methods, objects can actually have lots of other kinds of stuff in them, such
as aliases, noteproperties, scriptproperties, etc.

• Some cmdlets make objects that have extra hidden properties called adapted or extended
properties which require you to know they exist and to handle them specially, get-member -view all
can sometimes help you to at least know they exist

Get-Member

©DENNIS SIMPSON 2013-2022

• Use get-member to view the members of objects 
get-host | get-member 
get-member -inputobject (get-date) 
get-date | get-member -membertype properties 
get-date | get-member -membertype property 
get-process | get-member | more 
get-wmiobject -class win32_process | get-member | more

• Note that each property in an object has a data type

• Note that each method in an object has a data type and may accept parameters, each of which
has a type

• -MemberType parameter can be used to retrieve only specific types of members

Object Members Examples

©DENNIS SIMPSON 2013-2022

• Methods are named blocks of code contained in objects

• Methods can be passed data as parameters

• Methods can return typed data

• Methods can be invoked using dot notation

• When a method is invoked, the object itself performs the task by running its code, not
Powershell

Methods

©DENNIS SIMPSON 2013-2022

• Members of an object can be accessed using the object handle, then a dot, then the member
name

• You can get an object handle using the (cmdlet) syntax

• (get-date) gives you the handle of the object produced by the get-date command

• (get-date).millisecond retrieves the property millisecond from the object produced by get-date

• (get-date).adddays(5) invokes the adddays method to add 5 days to the datetime object
produced by get-date

Dot Notation

©DENNIS SIMPSON 2013-2022

• (get-date).gettype()

• ("test").gettype()

• (5).gettype()

• ("a","b","c").length 
("a","b","c").count

• (get-date).dayofweek 
(get-date).dayofweek | get-member

• get-process powershell 
get-process powershell | format-list * 
(get-process powershell).startinfo 
(get-process powershell).startinfo.username

• (gwmi -class win32_process).getowner() 
(gwmi -class win32_process).getowner().user

Dot Notation Exercises

©DENNIS SIMPSON 2013-2022

• Objects can be created on the command line by specifying data and letting powershell decide what
to create

• Objects can be created by cmdlets

• A useful cmdlet for making objects of your own design is  
new-object -typename psobject -property @{name=value;name2=value2}

• Multiple names and values can be specified, and placing them on separate lines makes them easy to
read

• This can be helpful for creating objects that have a custom set of members, particularly if you are
building objects in a loop

• Predefined objects can be created by specifying a typename for those objects

Creating Custom Objects

©DENNIS SIMPSON 2013-2022

• new-object -typename psobject -property @{key1="value1";key2="value2";key3=(get-
date).millisecond}

• (get-date).dayofweek | get-member -membertype property 
new-object -typename system.dayofweek -property @{value__=3}

• foreach ($c in (1..4)) { 
 new-object -typename psobject -property @{ 
 PlaceCount=$c; 
 MaxValueInBinary=[math]::pow(2,$c); 
 MaxValueInOctal=[math]::pow(8,$c) 
 } 
}

Custom Objects Examples

©DENNIS SIMPSON 2013-2022

• Table is the default format for many cmdlets that display collections of objects (e.g. get-
process, get-alias, get-eventlog), but not all

• format-table can be used to display non-default properties or format them to suit your
requirements, you can specify property names to be displayed

• ft is an alias for format-table

• -AutoSize parameter very helpful

• format-table is designed to only be used in pipelines at the end

Format-Table

©DENNIS SIMPSON 2013-2022

• get-date | format-table

• get-date | format-table -autosize

• (get-date), 
(get-date).adddays(4), 
(get-date).addhours(16) | 
format-table -autosize year, month, day, hour, minute

• get-date | format-table | get-member

Format-Table Examples

©DENNIS SIMPSON 2013-2022

• List is the default format for many cmdlets that display single objects (e.g. get-host, get-
member, get-service), but not all

• format-list can be used to display different data items, you can specify property names to be
displayed

• fl is an alias for format-list

• fl * is a way to see the data for all printable properties on an object

Format-List

©DENNIS SIMPSON 2013-2022

• get-process powershell

• get-process powershell | format-list

• get-process powershell | format-list *

• get-process svchost

• get-process svchost | format-list id, name

• get-wmiobject -class win32_process | format-list processid, name, commandline

format-list Exercises

©DENNIS SIMPSON 2013-2022

Lab 2 - creating and exploring objects

