
©DENNIS SIMPSON 2013-2022

Powershell

Introduction

©DENNIS SIMPSON 2013-2022

• Windows Powershell version 5.1 is the target version for this course

• The get-host command can be used to see your Windows Powershell version 
(get-host).version.tostring()

• If you do not have version 5.1 of Windows Powershell, upgrade your version of Powershell

• Windows Powershell 5.1 is the current release of the Windows-specific version of Powershell

• Powershell Core 6 for Linux, MacOSX, and Windows was the first release of Powershell Core from
Microsoft and has serious changes for Windows Powershell users

• Powershell Core 6 is so different they came up with a new command to run it (pwsh) and renamed
the old Powershell to Windows Powershell - we will just use the name Powershell to save slide real
estate and it will mean Windows Powershell for the duration of this course

Powershell Versions

©DENNIS SIMPSON 2013-2022

• Clone your github COMP2101 repository to your PC and make a folder in the cloned folder to
hold your Powershell scripts

• Create your scripts during the semester in that Powershell folder and keep it synchronized
with github using git add, commit, push or the windows git tools from github

Powershell Github Setup (optional)

©DENNIS SIMPSON 2013-2022

• Traditional command line interface shells like
bash, DOS cmd, etc. are tools that let you run
commands found in the system and deal with text
or simple numeric data

• Traditional shells only do what you tell them to do

• Traditional shells run commands in scripts the
exact same way they run on the command line

• Traditional shells run scripts in their own
processes

Powershell vs. Traditional Command Line Shells

• Powershell is designed to run cmdlets and
deal with objects

• Powershell guesses what you might have
meant and does whatever it decides you
wanted or thinks you should have wanted

• Powershell scripts may or may not run
cmdlets differently in scripts from the
command line and the command line behaves
differently depending on how you start
powershell

• Powershell runs scripts in a single process so
data and output formatting bleeds between
scripts run from the same command line

©DENNIS SIMPSON 2013-2022

• Your Windows login provides a privilege level

• Windows administrator login does not grant Powershell administrator privilege

• Use Run As to get administrator privilege level in Powershell, regardless of what login you used
for Windows

• BEWARE: Run As will only sort of make you Administrator if you are using active directory, and
is silently dependent on active directory group policies

Powershell Privileged User

©DENNIS SIMPSON 2013-2022

• Start Powershell in console mode

• Run the command

get-acl c:/windows/*

• Note the error

• Run Powershell using Run As to gain administrator privilege and rerun the command

• Note the difference in the window frame title

• BEWARE: commands that change things can fail partway through and leave things in a broken
state

Privilege Exercise

©DENNIS SIMPSON 2013-2022

• Console mode is available even without the gui, and is especially useful when you have a low
resolution display

• ISE (Integrated Scripting Environment) is a development environment and provides convenient
access to supplemental tools

• Privilege restrictions apply to both

• They have separate profiles, most commands work in both

• Only console mode has a future and is cross-platform as of Powershell Core 6; Microsoft's family of
IDE products are to be used with PowerShell going forward (VSCodium is a good way to get started)

• ISE is deprecated now, and only works with the old Windows Powershell 5 and below

Console vs. ISE

©DENNIS SIMPSON 2013-2022

• Start Powershell in console mode and in ISE mode

• Run the command ise from the Powershell console

• Try entering these commands in both modes and look for differences in the output

get-process -id $pid

get-host

get-history

Interface Exercises

©DENNIS SIMPSON 2013-2022

• Cmdlets are what the light-weight commands in Powershell are called, Powershell does not
start new processes to run them

• Thousands are built into Powershell and you can create your own by writing functions

• Cmdlets and their parameters are case insensitive

Cmdlets

©DENNIS SIMPSON 2013-2022

• Which Powershell cmdlets are available depends on the .NET libraries and are therefore
dependent on the .NET version you have installed, as well as what operating system you have

• The general form for cmdlets is verb-noun

• The well-known verbs can be displayed with get-verb

• Nouns are defined by Powershell and the installed modules from .NET along with any modules
you have installed

• Available commands can be displayed by the get-command cmdlet

Cmdlet Names

©DENNIS SIMPSON 2013-2022

• Powershell provides online help with the get-help command

• help is a function invoking get-help that automatically paginates the output by piping get-help to
the more command

• Running help or get-help without any parameters displays how to use the get-help command

Getting Help

©DENNIS SIMPSON 2013-2022

• You can run get-help on cmdlets or on topics

• Topic help pages are named about_topic, cmdlet help pages are named cmdlet

e.g. help about_

e.g. help get-date

Help Types

©DENNIS SIMPSON 2013-2022

• By default, help only displays basic help including DESCRIPTION, SYNTAX, and SEE ALSO
sections

• Like most cmdlets, get-help accepts several parameters which modify how it works and what it
displays

• Powershell only includes the basic help in the default installation

• More help content is available for most cmdlets by using the -Detailed, -Examples, and -Full
parameters

• BEWARE: these options don't work properly unless you run update-help at least once on the
computer

Default Help

©DENNIS SIMPSON 2013-2022

• Use the update-help cmdlet to install complete help pages and keep them up to date

• update-help will only update your pages once a day unless you use the -Force parameter

• update-help requires administrator privilege

• update-help should be added to scheduled tasks if you keep local help pages

• BEWARE: update-help should be run with erroraction set to deal with the fact that Microsoft
doesn't keep the updated help servers complete

Updating Help

©DENNIS SIMPSON 2013-2022

• The -Online parameter can be used to view the latest help for cmdlets and topics on the web,
without running update-help on your own computer

• e.g. help -Online get-help

• The online help includes the ability to choose which Powershell version to look at for help
because cmdlets can change from one version to another

• Powershell online help does not provide Powershell 1.0 or 2.0 help

• BEWARE: the online help does not automatically choose the current version of Powershell to
show help for

Online Help

©DENNIS SIMPSON 2013-2022

• Use get-help about_ to view the available topics list

• Try viewing the topic help for command syntax, pipelines, and parameters

• Use get-help with the start, stop, clear, get, and set verbs only to see what nouns are available
for those verbs

• Use get-help to get some descriptions for the following sample cmdlets:

• get-process, get-date, get-host, clear-host, stop-job, start-service

Help Exercises

©DENNIS SIMPSON 2013-2022

• Run the update-help cmdlet to install full help pages on your computer

• Compare the output for the help get-date cmdlet when using the help cmdlet with no
parameters versus using the -detailed, -examples, and -full parameters

• Compare the help -full get-date output to the online version from help -online get-date

• Use show-command to try the help popup and compare it to the command help pane in ISE

Extending Help Exercises

©DENNIS SIMPSON 2013-2022

• The show-command cmdlet will display a popup window which allows click-based command
construction

• You can access help from the show-command popup

• The show-command popup captures input

• The show-command popup is implemented as a pane in ISE, which does not capture the input

ISE Help

©DENNIS SIMPSON 2013-2022

• Parameters in Powershell are words starting with a - character

• Both commands and their parameters can be completed using the tab key

• Repeatedly pressing tab cycles alphabetically through matching choices

• Shift-tab moves backwards through the list of choices

• The list wraps around at both ends

• Pressing Control-space shows a list of possible completions

Tab Completion

©DENNIS SIMPSON 2013-2022

• Parameters only require you to type enough characters to uniquely identify a specific
parameter

• Cmdlets which require parameters to run will complain when you try to run them without the
required parameters

• Parameters can be organized in named sets to avoid conflicts between mutually exclusive
parameters

• Always use complete parameter names in scripts

• See about_Parameters for more info

Parameters in Scripts

©DENNIS SIMPSON 2013-2022

• In a Powershell console window, try using tab to view all possible parameters for the get-date
cmdlet

• In ISE, observe what happens as you type commands and their parameters, use get-random as
your sample command for this

• In ISE, use the command list pane to create and run a get-date command that displays the date
with day set to 1, hour set to 2, minute set to 3, month set to 4, and year set to 5

• Use control-left click on the cmdlet name in the command list pane to dismiss the cmdlet entry
subpane

Command Completion Exercises

©DENNIS SIMPSON 2013-2022

• On Windows, execution policy determines whether scripts can be run as commands

• Execution policy has scope, there are separate process, user, and system scopes available

• The file extension is used to determine if a file contains a Powershell script

• The extension ps1 means a Powershell script

• BEWARE: Powershell runs scripts in the current process meaning the commands you run and
scripts you execute affect each other in unexpected ways

Execution of Scripts

©DENNIS SIMPSON 2013-2022

• Execution Policy is retrieved using get-executionpolicy

• Execution Policy is set using set-executionpolicy policy (using Run As Administrator) where
policy is one of several choices: restricted, allsigned, remotesigned, unrestricted, bypass

• The default policy is restricted, up to 5.1 and prior to Windows Server 2012R2, remotesigned
after that

• See about_Execution_Policies for more info

• Execution Policy only exists in Windows

• BEWARE: remotesigned is only meaningful if every machine which has stored or runs the script
is a windows machine with an NTFS filesystem

Execution Policy

©DENNIS SIMPSON 2013-2022

• Use get-executionpolicy to see what your policy is currently set to

• Try the -list parameter to see what it is set to for different scopes

• Create a file named helloworld.ps1 with one line it that looks like this:

“Hello World!”

• Try to run your helloworld.ps1 script as a command

• Use set-executionpolicy to set your policy to a mode that allows you to run scripts

• Rerun your script as a command

Execution Policy Exercises

©DENNIS SIMPSON 2013-2022

• Like bash, Powershell has a path variable that defines where the shell looks for commands using
a semicolon-delimited list of folder names called $env:PATH

• Powershell provides a default command path stored in the variable

• To see what is in the variable, type the variable name on the command line

• To change it, type $env:PATH = "$env:PATH;drive:/new/path/name/to/add"

• You can create a profile file to run startup commands, which is how you might choose to set a
different path that takes effect every time you run powershell

Command Path

©DENNIS SIMPSON 2013-2022

• Powershell has several recognized profile files

• To see the name of the profile file that applies to your current session, look in the $profile
variable

• To see if you have a profile file, run test-path $profile

• To create such a file, try notepad $profile

• You can also create a profile file using

 new-item -itemtype file -force $profile

• See about_Profiles for more info

Profiles

©DENNIS SIMPSON 2013-2022

• Clone your github repository if you haven't already done that, and move your helloworld.ps1
script to a directory in your cloned repository

• Add a line to your $profile file on your PC that adds your cloned repository's powershell scripts
directory to your $env:path

• Start a new powershell and verify you can run helloworld.ps1 without entering a path to the
command

Profile Exercises

