
©DENNIS SIMPSON 2013-2022

bash Scripting Introduction

COMP2101
Summer 2022

©DENNIS SIMPSON 2013-2022

• Linux is a derivative of UNIX and is very similar to UNIX

• UNIX was built on a philosophy of creating tools that each do a clearly defined task well, and making
them work together

• Bash is typically the default shell program used to provide users with a command line interface
to the UNIX and Linux operating systems, and is primarily used to start other programs

• Bash was produced in the late 1980s implementing the design philosophy and command
structures of existing shells

• Bash is open source and actively maintained

Bash Background

https://en.wikipedia.org/wiki/Unix_philosophy
https://en.wikipedia.org/wiki/Unix_philosophy

©DENNIS SIMPSON 2013-2022

• Execution is structured and data is treated as a stream of text

• A script is simply one or more commands saved to a file

• A bash script is a script that is run by the bash program and the commands in it must be
commands that work on the bash command line

• MacOS bash is the same as Linux bash, but MacOS bash scripts are often not portable to Linux
systems due to many differences in the rest of the system

Scripting With Bash

©DENNIS SIMPSON 2013-2022

Basic Topics

• Script creation and execution

• Script content

• Script storage

©DENNIS SIMPSON 2013-2022

• Scripts are plain text files that are created and edited the
same as any other plain text file

• This is usually done with a command line interface (CLI) text
editor such as nano or vi or a graphical user interface (GUI)
program such as gedit, atom or vscode (packaged as codium)

• Although the operating system does not require any special
file naming for scripts, .sh is typically used as the file suffix to
overcome limitations in GUI programs

• Any program that puts plain text in a file can create a script

• Word processing programs do not normally create plain text
files

Script Creation/Modification

cat > file.sh <<EoF
script stuff
EoF

nano scriptfile.sh

vi scriptfile.sh

©DENNIS SIMPSON 2013-2022

• Scripts can be run as commands or by specifying them as an
argument (command line data) to the bash command

• Running a script as a command requires execute permission for
the script file and that the shell can find the script file (it only
looks in the directories listed in the PATH variable)

• Scripts can be copied and pasted onto a bash command line if you
want to test the commands, be careful if you try to do this
between Windows and other operating systems in VMs

Script Execution

cat > scriptfile.sh <<EOF
#!/bin/bash
echo "running script"
EOF

bash scriptfile.sh

chmod u+x scriptfile.sh
./scriptfile.sh

mv scriptfile.sh ~/bin
scriptfile.sh

©DENNIS SIMPSON 2013-2022

• Scripts can contain commands, blank space,
comments, and inline data

• Scripts contain a minimum of one command, with no
practical limits on script length

• Commands in scripts are the exact same commands
you could use on the command line interactively

• Scripts end when they encounter a fatal bash error, or
the exit command, or run out of commands

Script Content
helloworld.sh:
#!/bin/bash
My first script

echo 'Hello World!'
echo "I am process # $$"
helloworldtemplated.sh:
#!/bin/bash
My second script

cat <<EOF
Hello World!
I am process # $$
EOF

©DENNIS SIMPSON 2013-2022

• Linux scripts are free-form with one exception
• The first line identifies the script as a script (magic number #!)
• The first line specifies how to run the command interpreter for the script
• The remainder of the script can be anything valid for the command interpreter
• #! is sometimes called shebang by the same fools who call vi vie

Script Structure

#!/bin/bash

#!/bin/bash -x

#!/path/to/interpreter –option1 –option2 …

#!/usr/bin/env bash

©DENNIS SIMPSON 2013-2022

• A comment is any text beginning with #

• They provide useful information about the script

Comments

This is a comment
Comments are ignored by the interpreter
echo "Hello World!" # this is a comment on the same line as a command

©DENNIS SIMPSON 2013-2022

• It can be very helpful to put some comments at the start
of a script describing the script’s purpose(s), inputs, and
outputs

• Use comments to explain uncommon or difficult to read
commands

• Comments can also be used to mark sections of a script

Common Comment Use

#!/bin/bash
helloworldugly.sh - an exercise in obfuscation
This script displays the string “Hello World!”
and then displays its PID

Function Definitions
function output-string { echo "$*"; }

Main Script Body
This is a silly way of creating the output text
We start with similar text and stream edit it in a pipeline
This is a trivial form of code obfuscation
This version might require installing rot13 first
which rot13 >/dev/null || sudo apt install rot13
output-string $(rot13 <<< "uryo jbyq" |
 sed -e "s/b/o/g" -e "s/l/ll/" -e "s/ol/orl/" |
 tr "h" "H"|tr "w" "W"|
 awk '{print $1 "\x20" $2 "\41"}')
bc <<< "(($$ * 4 - 24)/2 + 12)/2" |
 sed 's/^/I am process # /'

helloworldugly.sh:

©DENNIS SIMPSON 2013-2022

• In order to run a script, the shell must be able to find the script file

• bash uses the PATH variable to locate commands which are not built-in to the bash program itself

• Scripts are often stored in a directory associated with their purpose

• Personal use scripts are often stored in ~/bin

• Ubuntu and many other Linux distros have ~/bin in the default PATH for normal users

• Any script storage directory can be added to your shell command path by changing the content of your
PATH variable (it holds a colon-delimited list of directories to look in for commands)

• Be sure to add this to your bash startup file (typically ~/.bashrc) if you want it to be there every time you
login - this example uses the script storage directory we are using in our labs

Script Storage

PATH=$PATH:~/COMP2101/bash

©DENNIS SIMPSON 2013-2022

Combining Commands

• Going beyond simple commands requires
thinking about how commands can be
combined

• A command which summarizes data might
require the data to come from another
command

• The output of a command may have extra
information which is unwanted and must
be filtered

• Output often requires context to be
meaningful, labelling matters

©DENNIS SIMPSON 2013-2022

• A command pipeline is a sequence of commands separated by the | character

• The | character causes the output of the command on the left of the | to be connected to the input of
the command on the right

• This allows us to run commands that work with the data from other commands without having to
save that data first

• Every pipeline implements the following possible sequence of activity:

• Gather data | Filter data | Manipulate data | Summarize or Format data

Command Pipeline

ls | wc -l
ps -eo user --no-headers | sort | uniq -c
ip a s eno1 | grep -w inet | awk '{print $2}'

©DENNIS SIMPSON 2013-2022

• Any command that produces output can be described as a command to gather data

• The echo command gathers whatever is on the command line after the command and produces
that evaluated text as output - e.g. echo "You are using the computer named $(hostname),
$USER"

• The cat command reads all data from a data source such as a file and produces it as output

• The find command can be used to produce a wealth of information about the files on a
computer and produce a wide variety of output about what is found

• The read command can be used to ask for data from a user interactively and produces a
variable as its output

Gathering Data

©DENNIS SIMPSON 2013-2022

• Commands that produce data may produce more data than is desired or
needed

• That output can be sent to a file, or through a pipe to a command for
immediate processing

• If part of the processing includes deciding what data to keep and what to
discard, that is called filtering

• Filtering commands examine data and apply rules to decide whether to keep
the data or discard it, and they can send the filtered data to a file, or
through a pipe to another command for additional immediate processing

• There are many commands that can use rules to filter data - grep is a very
common one that can filter data using both pattern matching and command
options to make decisions about what data to keep and what to discard

Filtering Commands

grep root /etc/passwd
grep sudo /var/log/auth.log
find ~ | grep -i lostfile
ip a | grep -w inet
ip r | grep -v default

©DENNIS SIMPSON 2013-2022

• Manipulating data involves making changes or edits to data based on rules

• You might want to change all numbers from bytes to megabytes in a text file

• You might want to encrypt or decrypt data

• You might want to reorder the data to some useful sequence such as biggest to smallest, or first
to last, or alphabetically sorted

• Many of the commands in a computer exist to manipulate data and there are thousands of them

• Examples might include sort, tac, sed, awk, etc.

• Manipulation does not just mean reformatting - it can be summarizing or extrapolating as well
using commands such as wc, awk, uniq, bc, printf, etc.

Manipulating Data

©DENNIS SIMPSON 2013-2022

• When building pipelines to process data, it is not uncommon for command lines to grow rather long

• For readability, long pipelines can be entered as multiple lines of text by splitting the line after the pipe symbols

• When using continuation lines like this, it is good practice to indent the continuation lines to make it clear to the
reader that they are continuation lines - most scripting shells allow this

Long Pipelines

find / -type f -printf '%k %u %p\n' 2>/dev/null| sort -nr | head -10|awk '{$1 = int($1/1024) "MB"; print $0}'

find / -type f -printf '%k %u %p\n' 2>/dev/null |
 sort -nr |
 head -10 |
 awk '{$1 = int($1/1024) "MB"; print $0}'

©DENNIS SIMPSON 2013-2022

• Labelling output makes it easier to read, reduces interpretation errors, and makes the results of your
commands more meaningful

• A label might be for a specific data item such as a number or name

• You might use a set of labels such as the headers for a table of output

• echo is often used to print out labels in scripts

Labelling Output

6

enp0s2

down

sda2 27GB 12GB /
sdb2 200GB 172GB /data

Online User Count: 6

Primary Network Interface: enp0s2

Webcam privacy cover position: down

Partition Size Free Mount Point
sda2 27GB 12GB /
sdb2 200GB 172GB /data

VS

©DENNIS SIMPSON 2013-2022

• Scripts end when they encounter a fatal bash error, or the exit command,
or run out of commands

• When a user enters the name of a script as a command for bash to run,
bash runs that script in a new process which is a child of the current bash
process

• If a script ends because it ran out of commands to run, the script is
considered to have succeeded if the last command it ran succeeded

• If a script ends because of a fatal bash error (like if the script tries to
divide by zero), the script is considered to have failed

• The success or failure of individual commands in the script are not
relevant to the question of whether the script failed

• A good script will include logic to verify proper outcomes, and will use the
exit command to end the script early if there is a reason to do that

How Scripts End
#!/bin/bash
this script would end as failed

myvar=$((1/0))

#!/bin/bash
this script would end as successful, without
printing hello world

exit
echo hello world

#!/bin/bash
this script would end as successful

myvar=$((1/0))
echo that did not work

©DENNIS SIMPSON 2013-2022

• You can watch how bash does command line evaluation if you use set -x

• Don't forget to turn it off with set +x if you use this

• You can run scripts using bash -x scriptfilename to see all command lines in the script get
evaluated before they execute

• You can put #!/bin/bash -x as the first line of your script to make it always run in debug mode

Debugging The Command Line

©DENNIS SIMPSON 2013-2022

• first scripts

• bash runtime environment

• first challenge script

Lab 1 - Beginner's bash

