
Linux Shell Scripting
Linux System Administration 

COMP2018 Summer 2017



What is Scripting?
• Commands can be given to a computer by entering 

them into a command interpreter program, commonly 
called a shell 

• Scripting is the act of saving one or more commands to 
a file for automated execution 

• Many interactive command interpreters can be run 
using saved scripts 

• Commands in scripts are executed exactly the same as 
if they were typed by hand into the interpreter



Why Script?

• Insulate a script user from the details of a task they 
are performing; create tools for non-administrative 
users 

• Communicate task activities and requirements to the 
user in a way the user can understand 

• Perform checks to ensure the task is properly run 
and deal with problems that may arise in carrying 
out the task as requested by the user



Script Execution
• Scripts can be run as commands or by specifying them as 

an argument to the bash command 

• Either way, they run in a new child process, not the current 
shell process, so they inherit your environment but do not 
have access to your local variables 

• Running a script as a command requires execute 
permission for the script file and that the shell can find the 
script file 

• To execute a script file in the current shell process instead 
of a child process, source it using the source command or 
its alias, the . (dot) command - this is equivalent to copying 
and pasting the script into the current shell 

• Scripts can be copied and pasted onto a bash command 
line if you want them to run in the current process, be 
careful if you try to do this between Windows and any 
other operating system

bash scriptfile.sh 

chmod u+x scriptfile.sh 
./scriptfile.sh 

mv scriptfile.sh ~/bin 
scriptfile.sh 

source ~/bin/scriptfile.sh 
. ~/bin/scriptfile.sh



Script Content
• Scripts can contain commands, 

blank space, comments, and 
inline data 

• Scripts are a minimum of one 
line, with no practical limits on 
length 

• Commands in scripts are the 
exact same commands you 
could use on the command line 
interactively 

• Scripts end when they encounter 
a fatal bash error, or the exit 
command, or run out of 
commands

#!/bin/bash 
# My first script 

echo 'Hello World!' 
echo "I am process # $$"

#!/bin/bash 
# My second script 

cat <<EOF 
Hello World! 
I am process # $$ 
EOF



Comments

• A comment is any text beginning with # 

• They provide the reader of the script with useful information 

• They can also be used as part of the process of debugging 
scripts

# This is a comment 

# Comments are ignored by the interpreter 

echo “Hello World” # this is a comment on the same line as a command 

# funky-command-that-might-be-causing-trouble



Command Pipeline
• A command pipeline is a sequence of commands separated by 

the | character 

• The | character causes the output (/dev/stdout) of the command 
on the left of the | to be connected to the input (/dev/stdin) of the 
command on the right 

• The exit status of a pipeline is the exit status of the last 
command in the pipeline

ls | wc –l 
ps –ef | awk ‘{print $1}’ |sort | uniq -c



Command Lists
• A command list is a sequence of commands separated by the 

operators ; & && and || 

• ; is used to simply execute commands in order with no 
dependence on each other 

• & is used to put a command into the background 

• && and || cause the command on the right to be run only on the 
success and failure respectively of the command on the left 

• We can use the exit status of test or [, and [[ commands to 
perform simple command lists based on the results of 
evaluating expressions



Variables
• Every process has memory-based storage to hold named data 

• A named data item is referred to as a variable (sometimes 
called a parameter), all of them together create a simple table 
with names and values 

• Variables can hold text or binary data as their value 

• Variables are typically created by assigning data to them, 
using an assignment operator such as =

myvar=3 
variable2="string data" 
vowels="aeiou"



Environment Variables
• By default variables are created in local process memory, not in the 

process environment  

• Environment variables are inherited by child processes 

• Environment variables are normally named using capital letters and 
numbers only  

• Variables can be exported to the environment or removed from the 
environment

VARNAME=“Some data for this variable” 
export VARNAME 
export -n VARNAME 
export VARNAME=“Data”



Accessing Variables

• Variable content is accessed using the $ symbol 
prefixed to the variable name 

• Non-trivial variable names must be surrounded by { }

echo $myvar 
echo ${myvar} 
echo ${myarray[32]} 
echo ${frank-n["beans"]}



Using Variables

• Variables have many uses 

• Command line 
substitution is a very 
common use, using a 
variable to provide data 
used on a command line 

• Variables are deleted 
using the unset command

echo $SHELL 
ls $HOME 
for file in $FILES; do 
if [ “$USER” != “$LOGNAME” ] 
mypid=$$ 

unset VAR



Shell Data - Numbers
• Data is often found inline in scripts 

• Inline data can be simple numbers or strings of characters 

• Numbers are simply entered as digits and can be signed, but must be 
integers 

• bash can do basic arithmetic +, -, *, /, % on integers by putting arithmetic 
statements inside $(( )) 

• Leaving off the $ allows you to test if the result is zero

echo 32 
echo $(( 3 + 4 )) 
echo "5 divided by 2 leaves a remainder of $(( 5 % 2 ))" 
(( $loot % $raiders )) || echo "Uh-oh, doesn't divide evenly"



Shell Data - Strings
• Strings are normally entered as 

single words, or surrounded by 
quotes for strings containing 
special characters such as spaces 

• Single quotes turn off all special 
characters 

• Double quotes turn off most 
special characters, $ is still special 
inside "" 

• Special characters can also be 
preceded with \ to turn off their 
special meaning

cd 
touch My File 
ls 
touch "My File" 
ls 
touch My\ Other\ File 
ls 
touch 'Terrible"Name"' 
ls 
touch -- '-worse\ name' 
ls



Special Variables
• $ - current process id 

• # - number of parameters on the command line of a 
script 

• 0-n - command line parameters 

• RANDOM - a random 15-bit integer 

• REPLY - default variable name for the read command 

• ? - exit status of most recent command



Exit Status
• Every process that runs, produces an exit status when it ends, either 

intentionally using the exit [status] command, or automatically due to script 
bailout, or end of file, or signal reception 

• The shell can access that status using the special variable ? 

• Exit status 0 normally means successful completion 

• Any time a command might fail and this would cause problems or be a problem 
for the script user, your script should be doing something to deal with the failure

echo $? 
[ $? = 0 ] || handle error



Testing Data
• We can do unary tests to determine if strings have data 

-v string or -n string, could also use -z string for zero 
length 

• We can do binary tests comparing string data to other 
values using =,<,>,!= including static values 

• We can do binary tests comparing integer data using 
 -eq, -ne, -lt, -le, -gt, -ge 

• This can be used to validate user input as well as test 
data retrieved from elsewhere in the system



Testing Files

• We can do unary tests for file existence (-e), type (-f,-
d,-h,-p,-b,-c,-S), permissions (-r,-w,-x,-k,-u), ownership 
(-O,-G), size (-s), modification (-N), and whether a file is 
an open terminal device (-t fd) 

• We can do binary tests on files based on their dates (-
nt, -ot), and determine if two filenames are hard linked 
(-ef)



If Command
• Action can be taken, or 

not taken, based on the 
exit status of a command 
list 

• The test command can 
evaluate unary or binary 
expressions, so it can be 
a very useful command 
for the list 

• For a list of available 
expression operators, 
refer to the man page

if list; then 
 list 
else 
 list 
fi 

if [ expr ]; then 
    list 
fi



While Command

• A list can be executed repeatedly based on the exit 
status of another list 

• The break or continue or exit commands can be used 
in the do list to get out of a loop early

while list; do 
 list 
done



For Command

• The for command allows repeated execution of a list 
either substituting values from a word list in a variable 
or by evaluating expressions

for varname in wordlist; do 
 list 
done 

for (( initial expression; test expression; loop expression )); do 
 list 
done


