
Linux Network 
Administration

Apache2 with SSL 
COMP1071 Summer 2020



HTTP vs. HTTPS
• HTTP is used to provide a protocol for client programs 

such as browsers to request resources (e.g. documents) 
from servers 

• HTTPS is HTTP with SSL encryption and authentication, 
defaulting to port 443 - requires https protocol specified in 
the URL 

• SSL encryption uses asymmetric keys, private and public 

• SSL authentication uses a certificate, which can be signed 
by a third party who guarantees the certificate's validity



Apache2 SSL Module

• To use SSL with Apache, enable the ssl module using 
a2enmod ssl 

• This enables the module for all sites that choose to 
use it 

• To test if the module is available for use in a site file, 
use the <IfModule mod_ssl.c> </IfModule> stanza 

• The <VirtualHost host:port> </VirtualHost> stanza 
should specify port 443 to use the default port



HTTPS Document Store

• The document store for an ssl-enabled website is no 
different from the document store for a non-ssl site 

• It is specified with the same DocumentRoot directive 
in the site conf file 

• The documents are not required to be encrypted on 
the server's storage device 

• You can use the same document store for both http 
and https if you want



SSL-enabled Site File

• Similar file to non-SSL sites, can use /etc/apache2/
sites-available/default-ssl for a template 

• ServerName, ServerAdmin, VirtualHost, DocumentRoot, 
and Directory directives may all be ssl site specific 

• Apache2 supports many tunable options for HTTPS, 
most defaults are fine for generic servers 

• The site file is enabled using a2ensite just like a non-
SSL site and then the server must be reloaded



SSL Directives and 
Dependencies

• SSLEngine must be set to on for SSL to be enabled on 
the virtual site 

• Additionally, key and certificate files must be identified 
using SSLCertificateFile, SSLCertificateKeyFile 
directives 

• Changing the certificate or key file content requires 
reloading the apache service



Sample HTTPS Site File
<IfModule mod_ssl.c>

<VirtualHost sitename:443>
ServerName sitename
ServerAdmin webmaster@sitename
DocumentRoot /sites/sitename
<Directory /sites/sitename>

Options Indexes
AllowOverride None
Require all granted

</Directory>
ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined
SSLEngine on
SSLCertificateFile /etc/ssl/certs/sitename.crt
SSLCertificateKeyFile /etc/ssl/private/sitename.key

</VirtualHost>
</IfModule>



Private Key File
• A private key, commonly stored in /etc/ssl/private, is used 

to encrypt and decrypt SSL traffic 

• The package providing ssl for apache is openssl, the 
command line tool used to perform ssl activities is openssl 

• The private key can be generated using openssl genpkey 
or it can be generated at the same time as a self-signed 
certificate using the nodes and newkey options to the 
openssl req command 

• The private key rules them all, keep it secret, keep it safe



Certificate File
• A certificate, commonly stored in a file in the /etc/ssl/certs 

directory, holds the server identity, signer information, and public 
key used for encryption and decryption 

• Certificates can be self-signed or signed by a Certificate 
Authority (CA) 

• Certificate signing requests can be sent to a Certificate Authority 
for signing, or certificates can be created locally if they are self-
signed or you can use a private CA 

• The openssl req command can be used to create signing 
requests, openssl x509 can be used to sign requests and 
manage certificate files



Certificate Procedure
• Create a private key 

openssl genpkey -algorithm RSA -out /etc/ssl/private/sitename.key 

• Create a certificate signing request 

openssl req -new -key /etc/ssl/private/sitename.key -out ~/sitename.csr 

• Send the csr to a Certificate Authority, they will send you 
back a certificate file which you store as /etc/ssl/certs/
sitename.crt 

• You can also run your own CA and sign your own requests



Self-signed Certificates

• Self-signed certificates are useful for encryption-only situations 

• Self-signed certificates are useful for internal-only use if you 
install your certificates as trusted on the client hosts 

openssl x509 -signkey /etc/ssl/private/sitename.key -in ~/sitename.csr -req -out /etc/
ssl/certs/sitename.crt 

• The openssl command can create the key and cert files in a 
single command for self-signed certificates 

openssl req -newkey rsa:2048 -nodes -keyout /etc/ssl/private/sitename.key -x509 -out /etc/ssl/
certs/sitename.crt -subj "/C=countrycode/ST=statecode/L=municipality/O=orgname/
CN=sitename"



Private CA
• Private CAs are used as a way of deploying one or more certificates in a 

controlled fashion 

• User and host certificates get signed by a private CA which is not part of 
the Public Key Infrastructure (PKI) provided by operating system vendors 

• The private CA gets added to the trust list of hosts which are expected 
to use certificates from the private CA 

• The private CA can sign multiple certificates and controls revocation of 
them 

• Only the private CA certificate needs to be installed as a trusted CA 
certificate on the client hosts for all the certificates it has signed to be 
trusted by those clients



easy-rsa

• The OpenVPN developers created a set of scripts as 
part of their software package, to make it easier to 
deploy multiple certificates to VPN clients 

• They later split the OpenVPN software into multiple 
projects, one of which (easy-rsa) had the scripts and 
tools to create and operate a private CA 

• easy-rsa is available as a package for many distros 
and provides a straightforward way to generate and 
manage certificates for limited distribution



Generating CA Files
• After installing easy-rsa, set up your private CA (make-cadir) 

• Easy-rsa versions before 3 used a vars file to set up the 
configuration, and put all generated files in a keys 
subdirectory - version 3 supports multiple pkis and places 
things under a pki subdirectory by default 

• Use the easy-rsa build-ca command to produce the CA 
certificate files (ca.crt, ca.key) for the server and install them, 
only do this once! 

• The CA private key is used to sign all certificates from the 
CA, make sure you keep it secure!



Generating Certificate/Key 
Files for the HTTPS Server

• Use the easyrsa script to build the certificate files 
(servername.crt, servername.key) for the https server, signed 
by your private CA 

• Copy the https server's certificate files (servername.crt, 
servername.key) from the easy-rsa pki directory to the 
appropriate /etc/ssl subdirectories (certs, private) on the 
https server 

• Install your private CA as trusted on the https server, and on 
the clients that will be using that server (copy the ca.crt file 
to /usr/share/ca-certificates/comp1071/ca.crt and dpkg-
reconfigure ca-certificates)



Testing an SSL-enabled Site
• telnet cannot be used to test SSL-enabled sites 

• curl or wget are the best choices for command line 
testing of https websites 

• A browser can also be used, but often hides too much 
information to be useful 

• The openssl command has a subcommand called 
s_client which can be used to do detailed examination 
of SSL connections and can give a telnet-style 
connection to a port that provides SSL connections



Logs

• Apache logs for ssl-enabled sites are identical to logs 
for non-ssl sites 

• Stored in /var/log/apache2 by default 

• Configurable on a per-site basis using ErrorLog and 
CustomLog directives


