Linux Network Administration

Domain Name System COMP1071 - Fall 2020

Concept

- Naming hosts made it much easier to identify them in commands, people work better with names
- Once the networks grew beyond a small number of hosts, managing those names and their addresses by passing around host file information became impractical
- A way of spreading the management of names and addresses transparently and with a minimum of overhead became very important

- ISC Internet Systems Consortium
 BIND is the current reference implementation of software that allows domain-based management of names and address on the internet
- It is open source, very low overhead, and is actively maintained
- Implements the DNS namespace by defining a protocol for sending DNS resource record queries and responses using UDP on port 53, or TCP using port 53 (multicast DNS uses port 5353 tcp/udp)

Namespace

- A hierarchical organization of names, similar to file system organization
- There is a root, represented by a period (.) and the domains attached to the root level are called top level domains (e.g. com, net, org, edu, etc.)
- The complete name of a host including all components up to the root is called the Fully Qualified Domain Name (FQDN)

Delegation

 Root servers only contain information about the top level domains, top level domain (TLD) servers only know about second level domains belonging to their own TLD, and so on

 A domain exists if a domain server has NS records for the domain name specifying one or more name servers, known as delegation

Resolver

- Client software providing transparent, automatic name resolution
- /etc/nsswitch.conf defines the system data sources for various naming services including host naming
- DNS services and parameters may be in /etc/resolv.conf
- Resolver can look up names in DNS

nsswitch

- /etc/nsswitch.conf defines data sources for information required by various programs
- Several data types are defined
- The hosts line controls where we look up host names and ip addresses

/etc/resolv.conf

- Used by resolvconf to find DNS data in many Linux distros
- nameserver directive specifies where to send DNS queries
- search line specifies domain names to try appending to names that fail to look up on their own
- Automatically updated by ifup, dhclient, resolvconf, netplan, etc.
 systemd-resolved monster keeps the filename but it is a link to systemd-resolved's own version of the file
- Can be built from multiple interface configuration definitions (interfaces file(s)), applied according to /etc/resolvconf/interfaceorder

systemd-resolved

- Systemd monster has consumed the straightforward resolver configurations of the past
- systemd-resolved service has its own config files and rules, and includes windows-style magic names
- When using systemd-resolved, names hard-coded into the daemon will override your configuration and you have a multitude of name lookup services mixed in with your resolver - name service switch no longer provides sure control of name service
- systemd-resolved works fine for typical business desktops
- System administrators may choose to just turn it off and statically define name service for reliability and maintainability, or compatibility with services such as VPNs

Querying DNS

- nslookup is tool to retrieve DNS records, defaults to looking for hostnames (A records) or IP addresses (PTR records)
- dig is an alternate tool providing more information and options but isn't always available
- nslookup [-querytype=RecordType] key [server]
- nslookup provides details about the lookup activity
- The host command allows for simplified output showing just the results of the lookup and works with multiple data sources
- getent hosts also allows name lookups regardless of what data source is being used

BIND

- bind9 is current version and package name, install with apt-get
- Installs some tools and the /etc/bind default configuration files
- Typically the dnsutils package is also installed to provide nslookup, dig, and nsupdate (bind9-host provides the host command)
- Supports primary, secondary, forwarding and caching servers

Primary Server

- Created by specifying type master in named.conf.local file
- Has source zone file for a domain where the data is maintained, specified with file directive in named.conf.local
- May provide zone data to secondary servers as well as other clients using allow-transfer keyword in named.conf.local
- Provides authoritative data for the domain

Secondary Server

- Created by specifying type slave in named.conf.local file
- Holds copy of zone file for a domain, specified with file keyword in named.conf.local
- Gets zone data using transfer from primary using master keyword in named.conf.local
- Secondaries poll the primary to check for updated serial number, and can also get notifications of change from the primary
- Provides authoritative data for a domain as long as it can stay up to date

Forwarding Server

- Sends all DNS requests to another server
- Caches results
- Will not do recursive searches
- Used to control DNS traffic within an organization
- Provides non-authoritative data for domains

Caching Server

- Any server that saves responses and does recursive searches
- Small networks do caching on their primary and secondary servers and do not use forwarding servers

BIND Configuration Directory

- BIND keeps its configuration files in /etc/bind and it contains 3 types of files we are interested in
- named.conf files configure the bind daemon and specify the domain names and which zone files provide records for those domains
- Key files used for DNS validation, maintained by apt upgrades
- Zone files hold DNS records

BIND Configuration Files

- named.conf includes other conf files
- named.conf.options sets daemon options
- named.conf.default-zones provides zone data for RFCdefined zones
- db.root provides DNS root server records
- localhost provides DNS data for localhost

Configuring Domains Served

- The named.conf.local file defines local stored zones (ones we are the primary or secondary for)
- For each domain, there is a zone stanza which specifies domain name, server type, and zone data file
- May also specify who can transfer zone data (if this is the primary), or who the zone data primary is (if this is a secondary)

Zone Data File

- Holds records for a zone, must have a Start Of Authority (SOA) record and at least one Name Server (NS) record
- Each record has a name, class, type, and data separated by the tab character
- The class we always use is IN, which means internet class record
- The name is also called the key and is the thing we are looking up when we request a record, along with having to specify a record type
- The data is what we get back and is record type specific

Record Types

- Start Of Authority (SOA) specifies global parameters for the zone
- Name Server (NS) specifies the names of the servers which are authoritative for the zone
- Address (A for IPV4 or AAAA for IPV6) specifies an address for a name
- Canonical Name (CNAME) specifies the target name for an alias
- Mail Exchanger (MX) specifies a host that handles email for a name
- Pointer (PTR) specifies a name for an address
- Location (LOC) specifies a latitude and longitude for a name

Reverse Lookups

- Allows looking up an address and getting the name for it
- Uses the address as the key and looks in the reserved domain name in-addr.arpa.
- Subdomains are created using the network number of the address block being served
- Names in the zone file are the host numbers on that network, with the FQDN being the data for those names

Syntax Checking

- named-checkzone can check the syntax for a zone file (e.g. named-checkzone zone zonefile)
- named-checkconf can check a conf file for syntax errors (e.g. named-checkconf conffilename)
- Neither can identify logic errors or missing information
- If both of these declare you have no errors, and things still don't load, check your log files for more error information

Service Management

- Like most Linux services, the bind service can be managed with the service command (e.g. service bind9 start|stop|restart|reload)
- rndc is a command included with BIND that can send messages to the running service (e.g. rndc reload| stats flush status)
- rndc is recommended as it is less disruptive to a running server than using the service command

- BIND logs errors and startup information to the syslog daemon by default
- In Ubuntu, the default place syslog sends messages from daemons like BIND is the /var/log/syslog file
- Like most files in /var/log, this file is automatically aged