
LINUX NETWORK
ADMINISTRATION
Network Configuration
COMP1071 - Summer 2020

INTERFACES

Interfaces provide a way to connect
a computer to a network for the
purpose of communication between
processes which may be on separate
computers

Interfaces may be physical (e.g.
ethernet or wireless) or virtual
(bridge, tunnel, virtual network,
loopback)

PHYSICAL INTERFACES

Ethernet is the most common at speeds of 100Mb, 1Gb, 10Gb and is an implementation of the
IEEE 802.3 communications standard

Wi-fi is the next most common in many different speeds and implements various IEEE 802.11
standards (a/b/g/n/ac/ad) and while it may support multiple radios, each wi-fi interface is a
single network interface for our purposes

Other physical connection technologies include fibre, bluetooth, coaxial cable, DSL, etc.

Physical interface names are composed of a short name for a driver and an instance number,
e.g. eth0, ens33, eno1, enp0s3, wlan0

VIRTUAL INTERFACES

Can be added onto existing physical interfaces and then used for VPNs, overlaid networks, vlans, and
other purposes

An overlaid interface is created when assigning additional IP addresses and masks to an existing
interface

Overlaid interfaces are traditionally named intf#:#, where the number after the colon is the virtual
interface number from 1 to 255

A vlan interface is created when using IEEE 802.1q tagging to create multiple virtual networks carried
on a single ethernet connection with security added by the network infrastructure devices

VLAN interfaces are traditionally named intf#.#, where the number after the period is the VLAN
number

netplan-based systems no longer use separate interface names for interfaces with overlaid or vlan
addresses

DATA ENCAPSULATION

TCP/IP is a suite of protocols
and data formats that enable
communications

It makes use of data
encapsulation to allow separation
of functionality into layers,
abstracting the details of each
layer from the others so that the
most suitable technologies can
be used for each part of the
communications task

VIEWING INTERFACES

The traditional tool to view interfaces is the ifconfig command

ifconfig can be used to change an interface’s configuration or to view it

ifconfig is deprecated in distros such as Ubuntu, use the ip command
instead

ifconfig eth0
eth0 Link encap:Ethernet HWaddr b8:27:eb:9d:a5:5c
 inet addr:10.26.189.170 Bcast:10.26.189.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:99233 errors:0 dropped:0 overruns:0 frame:0
 TX packets:7041 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:41764065 (39.8 MiB) TX bytes:689826 (673.6 KiB)

USING THE IP COMMAND

The ip command can be used to view and change the running network interface configurations

The ip command does not modify configuration files, so changes made with ip do not persist
through reboots

The ip command is a swiss army knife, it uses an object name on the command line to tell it
what to work on, then a command to tell it what to do with that object

Common objects include link, address, route

Object commands depend on the object, but viewing current configuration is always done
with the show or list command, and there is usually add and delete

Objects and object commands can be abbreviated (e.g a for address, s for show, etc.) and list
or help is the default object command if you don't give one

IP COMMAND EXAMPLES
ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP mode DEFAULT group default qlen 1000
 link/ether 08:00:27:c5:43:41 brd ff:ff:ff:ff:ff:ff
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP mode DEFAULT group default qlen 1000
 link/ether 08:00:27:6a:c1:d8 brd ff:ff:ff:ff:ff:ff
ip l
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP mode DEFAULT group default qlen 1000
 link/ether 08:00:27:c5:43:41 brd ff:ff:ff:ff:ff:ff
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP mode DEFAULT group default qlen 1000
 link/ether 08:00:27:6a:c1:d8 brd ff:ff:ff:ff:ff:ff
ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
 link/ether 08:00:27:c5:43:41 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic enp0s3
 valid_lft 82471sec preferred_lft 82471sec
 inet6 fe80::a00:27ff:fec5:4341/64 scope link
 valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
 link/ether 08:00:27:6a:c1:d8 brd ff:ff:ff:ff:ff:ff
 inet 172.16.3.2/24 brd 172.16.3.255 scope global enp0s8
 valid_lft forever preferred_lft forever
 inet 172.16.4.2/24 brd 172.16.4.255 scope global enp0s8
 valid_lft forever preferred_lft forever
 inet 172.16.5.2/24 brd 172.16.5.255 scope global enp0s8
 valid_lft forever preferred_lft forever
 inet 192.168.57.4/24 brd 192.168.57.255 scope global dynamic enp0s8
 valid_lft 415sec preferred_lft 415sec
 inet6 fe80::a00:27ff:fe6a:c1d8/64 scope link
 valid_lft forever preferred_lft forever

INTERFACE IDENTIFICATION
lshw is a command that shows the hardware which Linux has recognized on our system

It can be limited to the network hardware devices, making it easier to find the device names to use
for networking commands

lshw -class network
 *-network
 description: Ethernet interface
 product: 82579LM Gigabit Network Connection
 vendor: Intel Corporation
 physical id: 19
 bus info: pci@0000:00:19.0
 logical name: eno1
 version: 04
 serial: ec:a8:6b:8d:ab:d7
 size: 1Gbit/s
 capacity: 1Gbit/s
 width: 32 bits
 clock: 33MHz
 capabilities: pm msi bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation
 configuration: autonegotiation=on broadcast=yes driver=e1000e driverversion=3.2.6-k duplex=full firmware=0.13-4 latency=0 link=yes multicast=yes port=twisted pair speed=1Gbit/s
 resources: irq:26 memory:f7c00000-f7c1ffff memory:f7c39000-f7c39fff ioport:f080(size=32)
 *-network DISABLED
 description: Ethernet interface
 physical id: 1
 logical name: virbr0-nic
 serial: 52:54:00:c6:09:b4
 size: 10Mbit/s
 capabilities: ethernet physical
 configuration: autonegotiation=off broadcast=yes driver=tun driverversion=1.6 duplex=full link=no multicast=yes port=twisted pair speed=10Mbit/s

INTERFACE HARDWARE
CONFIGURATION

ethtool and mii-tool are tools
you can use to show detailed
hardware configuration
information for ethernet
interfaces

both may give you strange
output for virtual interfaces
such as those found in virtual
machines

ethtool eno1
Settings for eno1:

Supported ports: [TP]
Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
Supported pause frame use: No
Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
Advertised pause frame use: No
Advertised auto-negotiation: Yes
Speed: 1000Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 1
Transceiver: internal
Auto-negotiation: on
MDI-X: on (auto)
Supports Wake-on: pumbg
Wake-on: g
Current message level: 0x00000007 (7)

 drv probe link
Link detected: yes

mii-tool eno1
eno1: negotiated 1000baseT-FD flow-control, link ok

ADDRESSING

An IP address uniquely identifies a
communications end point host
machine

You need to know your destination’s IP
address if you want to communicate
with them

TCP/IP uses a combination of IP
address (V4 or V6), protocol (TCP,
UDP, etc.), and port (0-65535) to fully
identify a communications end point
(sometimes called a socket, used by a
process)

HOST NAMES VS. ADDRESSES

Addresses for TCP/IP are either 4
or 16 bytes (IPV4 vs. IPV6)

We use names instead of addresses
for convenience and flexibility

Our host's primary name is kept in
/etc/hostname and is used to set
the name of the machine at boot

Name to address conversion is
automated using /etc/hosts

192.168.1.1 router
2607:f8b0:400b:80a::200e google.com
127.0.0.1 localhost

192.168.1.1
127.0.0.1
2607:f8b0:400b:80a::200e

router
localhost
google.com

myhostname

ADDRESSING EXERCISE

Use ip addr show or ifconfig to show the IP addresses your computer
will respond to and use

Use netstat with no options, with the -tp options, and with the -lp
options to review current TCP/IP connection endpoints and processes

Use netstat -s to review TCP/IP statistics

Identify and try using the ss command to get the same information

Use nmap to see what addresses are in use on the lan

INTERFACE CONTROL

ifup and ifdown are traditionally used to turn interfaces on and off
with their default configuration, normally at boot and shutdown

/etc/network/interfaces traditionally contains the default
configurations for non-GUI managed interfaces

GUIs change the rules and make up their own rules

ifup -a runs at boot in systems using the interfaces-style files

netplan is a newer method in some Linux distros

/ETC/NETWORK/INTERFACES

Two main lines control each interface

auto interfacename

iface interfacename inet static|dhcp|
manual|loopback

Additional lines must be present for
static, minimum is address and
netmask

auto lo eth0 eth1 eth1:1
iface lo inet loopback

iface eth0 inet dhcp

iface eth1 inet static
 address 192.168.1.2/24
 gateway 192.168.1.1

iface eth1:1 inet dhcp

NETPLAN

The netplan tools use YAML files to specify network configurations in
the /etc/netplan directory

The netplan configuration files are named with a .yaml suffix and have the
configuration created during system install

They use mappings and tokens to specify cumulatively applied parameters

An interface can appear in multiple YAML files and parameters will be
sequentially and cumulatively applied

Use netplan apply after making changes to any YAML config file

DEFAULT NETPLAN FILE

A mapping contains all the mappings indented
below it

A mapping can contain more mappings or
tokens for a mapping

A token can be a single value such as true, or
192.168.1.1

A token can be a list of values such as [1, 2, 3]

Refer to the man page for details on what can
be put into a mapping

network:
 ethernets:
 enp0s3:
 addresses: []
 dhcp4: true
 enp0s8:
 addresses: []
 dhcp4: true
 version: 2

SERVER NETPLAN FILE

Server addresses are statically
assigned

May have private routes

Nameservers and search domains are
statically specified

network:
 version: 2
 renderer: networkd
 ethernets:
 enp0s8:
 addresses:
 - 192.168.2.61/24
 - 172.16.4.2/24
 routes:
 - to: 172.16.6.0/24
 via: 172.16.4.1
 - to: 172.16.9.0/24
 via: 172.16.4.1
 nameservers: [192.168.2.1]
 search: [bigcorp.com]

http://bigcorp.com

NETPLAN AND VLANS

Netplan sets configuration parameters for matching
devices in mappings

VLANs are a special version of an ethernet device with a
VLAN id added to it (see IEEE 802.1q tagging)

To configure a netplan vlan, create a vlans mapping in a /
etc/netplan yaml file and add the VLAN name, id, link, and
configuration details for that virtual interface

The name of the device to create for the vlan virtual
interface can be set by simply putting one in the vlans
mapping in netplan

vlans:
 vlan-name:
 id: 10
 link: ens38
 addresses:
 - 172.16.3.2/24

http://www.ieee802.org/1/pages/802.1Q.html

NETWORK CONNECTION
VERIFICATION

Once an interface has an IP address assigned and is turned on, it can be
used to send and receive data

Some basic tools for checking network connections include ping, nmap,
ss, and netstat

ping can bounce a diagnostic (ICMP echo) packet off a host

nmap can be used to generate many kinds of network traffic

ss and netstat can be used to examine interface statistics and current
connections

INTERFACES EXERCISE

Use lshw -C network to review your available network hardware

Use ethtool on ethernet interfaces to review your ethernet
configuration

Use ip link show to review interfaces which are configured

Use netstat -i and ip -s link to review your network statistics

WIRELESS INTERFACES

iwlist and iwconfig are your primary tools to scan and configure
wi-fi interfaces

wlan0 is a typical device name for a wi-fi connection

Automatic connection establishment can be done by configuring
connections in /etc/wpa_supplicant/wpa_supplicant.conf

Wireless interfaces are not typically employed on servers for
reliability reasons

DHCP CONCEPTS

DHCP, the Dynamic Host
Configuration Protocol, is used to
provide automated interface
configuration to hosts on a network

A dhcp client retrieves information
from a dhcp server

Clients can choose what to use
from the server without telling the
server what they used

DHCP CLIENT

Default configuration invoked by using the
dhcp keyword on the iface line in /etc/
network/interfaces or by setting the dhcp4
attribute to true in your netplan file

Retrieves and by default uses ip address and
netmask, DNS server(s), default gateway

Expects server to be directly connected on
LAN, DHCP uses broadcast

systemd-resolve --status command can show
what has been received from DHCP servers
on newer distros

DHCP SERVER

Server provides configuration in an advisory role

Can supply many things, usually just ip address and netmask from
a pre-defined range, default gateway, and DNS server(s)

Can provide local data, or perform proxy service for a remote
dhcp server

Configurations are provided to clients on a lease basis, they
expire if not renewed by the client on a regular basis

ISC DHCP SERVER

Simple, easy to configure server, open source, free

Package name is isc-dhcp-server

Configuration in /etc/dhcp/dhcpd.conf, many examples in the
default file

Provides individual configurations per interface

ISC DHCP CONFIGURATION

/etc/dhcp/dhcpd.conf for ISC server

/etc/dhcp/dhclient.conf, /etc/dhcp/dhclient-{enter,exit}-hooks.d
for client

The man page and example files are the documentation

DHCP LOGS

/var/log/messages or /var/log/syslog by default

Automatically aged by logrotate

ROUTE TABLE

The route table is a table in memory used by the kernel whenever it is asked to send data using
TCP/IP

It provides a list of destinations and identifies where to send data so that it can reach those
destinations

Traffic for directly connected hosts is sent to the interface for that network

Traffic for remote destinations is sent to a router that knows how to reach the destination network

A default route is usually set up so that data packets not destined for local networks can be sent to
remote hosts such as those found on the internet
route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.3.1 0.0.0.0 UG 0 0 0 br0
10.23.134.0 0.0.0.0 255.255.255.0 U 0 0 0 lxdbr0
192.168.3.0 0.0.0.0 255.255.255.0 U 0 0 0 br0
192.168.122.0 0.0.0.0 255.255.255.0 U 0 0 0 virbr0

IMPLICIT ROUTES

Setting an address on an interface creates an entry in
the route table using the address and netmask assigned
to that interface

Packets sent to directly connected hosts use the ARP
protocol (a broadcast protocol) to find hardware
(MAC) addresses for the destination IP addresses

To send data to networks not directly connected, we
need a host which can reach those networks to pass
traffic on to the destination for us

That forwarding of traffic is called routing and is
accomplished by setting the router's MAC address as
the destination MAC address in packets even though
the destination IP is still the address of the remote host

Image courtesy of http://www.tcpipguide.com/free/index.htm

STATIC ROUTING

A static route is one which is configured explicitly using the route or ip route
add command, and remains in place until removed by the route or ip route
delete command, or the system shuts down

It is primarily used to provide private routes or handle routes through devices
which do not support dynamic routing protocols

Zebra (part of Quagga) can be used to automate static route configuration
using a Cisco-like interface for systems that do not use netplan

netplan systems simply add routing entries to their YAML files

IP forwarding must be enabled to provide routing service

DYNAMIC ROUTING

Linux supports all major dynamic routing
protocols

The Quagga package provides dynamic routing
services using a configuration file syntax
similar to Cisco IOS

IP forwarding can be enabled in /etc/sysctl.conf

vtysh can be used to send Cisco IOS-like
commands to quagga once it is running

WORKING WITH THE ROUTE
TABLE

netstat -r shows the route table

route is used to add routes (route add), delete routes (route delete), and
show the route table

traceroute sends packets to a destination with increasing TTL values, causing
them to fail at the first router, then the next and so on

The diagnostic packets coming back from each router allows traceroute to
display a list of the routers that handled the packets on the way

The -n option can be used on these commands to show addresses instead of
hostnames

FIREWALL

A firewall is a piece of software that can examine packets
and allow, deny, log, or modify them, primarily implemented
to prevent unwanted traffic

The filter software commonly used in Linux distributions is
called netfilter, and is primarily configured and examined
with the iptables command

The iptables command can apply rules (tests with
consequences) to the packets

The default firewall state in Ubuntu and many others is that
the firewall is disabled, and the default ruleset allows all
traffic

UFW

UFW simplifies firewall
management

It uses profiles stored in /etc/
ufw/applications.d/ to name
groups of ports and protocols

It has built-in iptables rules for
common firewall tasks stored
in /etc/ufw/before and /etc/ufw/
after directories

ufw allow 22/tcp

ufw allow profile

ufw app list

ufw app info

ufw enable

ufw disable

FIREWALL EXERCISE

Add a rule to your firewall using ufw allowing ssh connections for your command
line access

Check your ufw status

Enable ufw

Recheck your ufw status

Review the output of iptables -L to see what got added to the kernel's firewall rules
tables

Examine the contents of the /etc/ufw directory to see what was put there by the
ufw package installation

INTERESTING COMMANDS

ifconfig
iwconfig
route
ufw
ip
ifup
ifdown

nmap
traceroute
iptables
ufw

lshw
iwlist
netstat
ethtool
mii-tool
ping

INTERESTING FILES

/etc/hostname

/etc/hosts

/etc/network/interfaces, /etc/wpa_supplicant/wpa_supplicant.conf

~/.ssh/authorized_keys, ~/.ssh/known_hosts

/etc/ufw/applications.d, /etc/ufw/before, /etc/ufw/after

/etc/sysctl.conf

