
NETS1035 FALL 2020

Applied Cryptography

SSL/TLS
Introduction

Random Numbers

Symmetric Encryption

Hashes

Asymmetric Encryption

Certificates

Signatures

SSL/TLS

SSH

VPN

Email

Disk Encryption

Attacks

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020-2021

• Deprecated in 2015, Secure Sockets Layer was a scheme to add cryptography to network
communications developed by Netscape for their Navigator web browser in 1994 and first released
for broad use as SSL v3 in 1996

• Dr. Taher ElGamal, who was chief scientist at Netscape at the time, is regarded as being the father
of SSL, along with being the creator of a signature scheme which later was used as the basis for
DSA and other ElGamal variants still in use today

• All versions of SSL are considered vulnerable to attack and are deprecated

• It was replaced by Transport Layer Security (TLS), newer versions of which are based on SSL 3.0,
the name was changed because Microsoft wanted that

• Confusingly, the term SSL is often used to mean TLS which is not technically correct, TLS is secure,
SSL is not

Secure Sockets Layer

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020-2021

• TLS 1.0 was developed as part of the Secure Data Network Systems (SDNS) joint initiative begun in
1986 by the NSA, National Bureau of Standards, Defense Communications Agency, and a dozen
companies, to research a security design for use on the public internet

• TLS was first published in 1995, but TLS version 1.0 was not released until 1999

• It was based not on the SP4 protocol that came from the SDNS efforts, but on SSL 3.0, and by
rights should have been called SSL 4, but Microsoft had issues with allowing a Netscape creation to
become the IETF standard, so it was renamed from SSL to TLS

• It is regularly referred to as SSL/TLS or TLS/SSL today and the current version is 1.3

• Like SSL before it, TLS uses asymmetric encryption and public key certificates in a protocol
handshake to establish trust before allowing the exchange of application data using a symmetric
encryption method

Transport Layer Security

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020-2021

Cipher Selection
• During SSL/TLS handshake, the client sends the server a list of

ciphers they are willing to use

• The server selects a cipher based on a preference list in the
configuration of the service software

• The server notifies the client of the selected cipher and the client
will use it

• As ciphers and modes get compromised or become
computationally insecure, the software package maintainers
update their cipher preference defaults and system/network/
security administrators must update their running services to
remain secure

• Simply updating software on existing machines does not always
update configuration files that have been modified since package
installation, manual intervention is often required to remove
deprecated ciphers

https://www.tutorialsteacher.com/https/how-ssl-works

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020-2021

3 stages of a TLS-secured connection
Where does TLS fit in the connection?

• TLS protocol rides on top of a TCP connection, so the first
stage is to establish a TCP connection between 2 endpoint
applications such as a web browser and a web server

• The TLS handshake protocol is stage 2 and must be completed
prior to the 2 endpoint applications exchanging application
data

• TLS uses public key certificates to establish identities and
trust, verifies server identity and may also verify client
identity with small additions to the handshake

• TLS uses asymmetric encryption to securely agree on a
random session encryption key for the 2 parties

• Stage 3 begins when the TLS handshake completes and the 2
endpoint applications switch to using symmetric encryption
with the agreed-upon session key for speed and efficiency

https://www.researchgate.net/figure/HTTPS-message-sequence-diagram-with-
detailed-TLS-handshaking-steps_fig1_306187575

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020-2021

Unauthenticated Client
TLS Handshake

• Provides a mechanism to create a temporary
random key known to both parties in a
connection whose content is not exposed if the
packets are captured

• Once the key is known to both parties, the
connection will stop using asymmetric
encryption and will start using higher speed,
more efficient symmetric encryption for the
duration of the connection

https://www.researchgate.net/publication/298065605_A_multi-level_framework_to_identify_HTTPS_services

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020-2021

2-way Authenticated
TLS Handshake

• Same as unauthenticated client but
includes the optional sending and
verification of the client's certificate

• Not normally used for web service

• Commonly used to establish longer-
duration connections for remote
trusted parties (e.g. VPN connections,
employee portal access applications,
etc.)

https://en.wikipedia.org/wiki/File:Ssl_handshake_with_two_way_authentication_with_certificates.svg

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020-2021

Server or SSL/TLS Certificates
• The FQDN of the server is the certificate's subject

• Normally includes additional identity information
such as organization name, address, email address,
etc.

• Contain the public key used to decrypt messages
from the server and encrypt messages that can
only be decrypted by the server

• May be self-signed (only valid for encryption, not
authentication), or may include a signature from
the CA that is guaranteeing this certificate is valid

• Generally stored using base64 encoding with a
header and footer, called PEM (Privacy-Enhanced
Mail) format, but may be stored in other formats
with other file extensions on Microsoft operating
systems - see http://www.gtopia.org/blog/2010/02/
der-vs-crt-vs-cer-vs-pem-certificates/https://blog.cloudflare.com/how-to-build-your-own-public-key-infrastructure/

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020-2021

• Openssl includes many tools for testing and diagnosing TLS/SSL connections

• It includes a diagnostic server mode, and a client mode

• You can trivially create a verbose server process that listens by default on port 4433

openssl s_server -cert certfile -key keyfile

• You can connect to the server using a verbose client to show the handshake and cipher
negotiation

openssl s_client -connect host:port

• These are much easier to use for configuration debugging than something like wireshark

OpenSSL

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020-2021

Apache2
Configuring websites for TLS/SSL

• Apache2 keeps it config files in /etc/apache by default

• The websites served are normally defined in site files

• Default ssl site config file in /etc/apache2/sites-available/
default-ssl.conf has most commonly used directives and
their default settings

• Also has lots of comments on what the defaults are, what
the choices are, and when and how to change them

• The apache website has the rest of the documentation

• Simple TLS protected websites can mostly use the defaults
and just need a certificate/key specified for the website

 # SSL Engine Switch:
 # Enable/Disable SSL for this virtual host.
 SSLEngine on

 # A self-signed (snakeoil) certificate can be created by installing
 # the ssl-cert package. See
 # /usr/share/doc/apache2/README.Debian.gz for more info.
 # If both key and certificate are stored in the same file, only the
 # SSLCertificateFile directive is needed.
 SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem
 SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

 # Server Certificate Chain:
 # Point SSLCertificateChainFile at a file containing the
 # concatenation of PEM encoded CA certificates which form the
 # certificate chain for the server certificate. Alternatively
 # the referenced file can be the same as SSLCertificateFile
 # when the CA certificates are directly appended to the server
 # certificate for convinience.
 #SSLCertificateChainFile /etc/apache2/ssl.crt/server-ca.crt

 # Certificate Authority (CA):
 # Set the CA certificate verification path where to find CA
 # certificates for client authentication or alternatively one
 # huge file containing all of them (file must be PEM encoded)
 # Note: Inside SSLCACertificatePath you need hash symlinks
 # to point to the certificate files. Use the provided
 # Makefile to update the hash symlinks after changes.
 #SSLCACertificatePath /etc/ssl/certs/
 #SSLCACertificateFile /etc/apache2/ssl.crt/ca-bundle.crt

 # Certificate Revocation Lists (CRL):
 # Set the CA revocation path where to find CA CRLs for client
 # authentication or alternatively one huge file containing all
 # of them (file must be PEM encoded)
 # Note: Inside SSLCARevocationPath you need hash symlinks
 # to point to the certificate files. Use the provided
 # Makefile to update the hash symlinks after changes.
 #SSLCARevocationPath /etc/apache2/ssl.crl/
 #SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl

 # Client Authentication (Type):
 # Client certificate verification type and depth. Types are
 # none, optional, require and optional_no_ca. Depth is a
 # number which specifies how deeply to verify the certificate
 # issuer chain before deciding the certificate is not valid.
 #SSLVerifyClient require
 #SSLVerifyDepth 10

 # SSL Engine Options:
 # Set various options for the SSL engine.
 # o FakeBasicAuth:
 # Translate the client X.509 into a Basic Authorisation. This means that
 # the standard Auth/DBMAuth methods can be used for access control. The
 # user name is the `one line' version of the client's X.509 certificate.
 # Note that no password is obtained from the user. Every entry in the user
 # file needs this password: `xxj31ZMTZzkVA'.
 # o ExportCertData:
 # This exports two additional environment variables: SSL_CLIENT_CERT and
 # SSL_SERVER_CERT. These contain the PEM-encoded certificates of the
 # server (always existing) and the client (only existing when client
 # authentication is used). This can be used to import the certificates
 # into CGI scripts.
 # o StdEnvVars:
 # This exports the standard SSL/TLS related `SSL_*' environment variables.
 # Per default this exportation is switched off for performance reasons,
 # because the extraction step is an expensive operation and is usually
 # useless for serving static content. So one usually enables the
 # exportation for CGI and SSI requests only.
 # o OptRenegotiate:
 # This enables optimized SSL connection renegotiation handling when SSL
 # directives are used in per-directory context.
 #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020-2021

• Nginx has a different configuration file syntax, but the settings required are mostly the same as
for Apache2

• The Nginx default configuration directory is /etc/nginx

• There are many ways to set up https under nginx, some more scalable than others

• See https://www.techrepublic.com/article/how-to-enable-ssl-on-nginx/ for an example of how to
set up TLS for nginx servers

Configuring Nginx for TLS/SSL

https://www.techrepublic.com/article/how-to-enable-ssl-on-nginx/
https://www.techrepublic.com/article/how-to-enable-ssl-on-nginx/

