
NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

Applied Cryptography

Random Numbers
Introduction

Random Numbers

Symmetric Encryption

Hashes

Asymmetric Encryption

Certificates

Signatures

SSL/TLS

SSH

VPN

Email

Disk Encryption

Attacks

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

Crypto
Primitives

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

• There are four primitives which are considered the building blocks of digital cryptography

• Random Number Generation

• Symmetric Encryption

• Asymmetric Encryption

• Hash Functions

• These primitives get combined to add the CIA (confidentiality, integrity, authentication)
properties to data

The Four Primitives

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

Random
Number
Generation https://xkcd.com/221/

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

• Simple ciphers are not cryptographically secure because they are so quick and easy to
break

• Breaking a caesar cipher can be done with trial and error by trying different shifts and
looking at the results

• It is easier if you have a useful amount of caesar ciphertext to just analyze the
frequency of characters and match it to the language of the plaintext that was
encrypted to find the value for the shift (the key)

• Simple ciphers always produce the same ciphertext for any given plaintext/key making
frequency analysis fast and reliable

• More sophisticated substitutions require more ciphertext and analysis of additional
characteristics of the ciphertext but can still be done fairly quickly with modern
computing power since most will produce the same ciphertext every time for a specific
plaintext/key

Simple Cipher, Simple Break

Cryptographically
Secure

• A method of
protecting data
is considered
cryptographically
secure if the
effort to crack it
makes cracking it
infeasible in a
useful timeframe

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

• Predictable characteristics of ciphertext, or flaws in algorithms which
cause predictable ciphertext patterns that may be exploited to discover
keys, are not good for maintaining confidentiality

• Producing multiple ciphertexts from one plaintext is an important tool
in making cryptanalysis difficult by eliminating or greatly reducing
patterns in ciphertext

• e.g. rainbow tables can be unusably larger if the result of encrypting a
specific plaintext can be many different ciphertexts

• Random numbers are included in secure algorithms to scramble
ciphertext in unpredictable ways

Random Numbers

Random Number

• A number which
cannot be
predicted

RNG

• Random Number
Generator, a
program whose
goal is to
produce random
numbers

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

• Most random number sources in modern operating systems and
programming languages do not generate random numbers, they
generate pseudo-random numbers

• Random numbers used in cryptography do not have to be truly random,
they only need to be unpredictable by an attacker

• Underestimating what is required to be unpredictable is a significant
contributor to success in defeating encryption algorithms

• There are many algorithms for producing pseudo-random numbers, all
of them balance predictability against speed

Random Number Generation

PRNG or PSRNG

• Pseudo-random
number
generator, a
program or
algorithm
designed to
produce
numbers which
are difficult to
predict

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

• PRNG algorithms generally need a seed value to start with and it is supposed to be
random, which is then repeatedly hashed and/or encrypted with pieces of each result
carved out and fed back in as the seed for the next iteration

• Some algorithms use a key as a seed

• Event measurements and very high resolution timestamps are often used for seed
numbers

• Some CPUs provide instructions to leverage the encryption hardware built into them to
create random numbers, because encrypted data is unpredictable, just like a random
number is supposed to be

• RNG algorithms are at the heart of crypto and as such they are constantly being probed
for ways to break them (i.e. figure out how to predict their output)

• When an algorithm is shown to be predictable, it is no longer considered cryptographically
secure

PRNG Algorithms
CSPRNG

• Cryptographically secure
pseudo random number
generator

Seed

• An initial value used as the
starting data for a PRNG
algorithm, a random
number is desired for this

Hash

• The result of applying a
formula to data such that
output is significantly
affected by any changes in
the original data

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

• CPUs can provide RNG capabilities, such as the RDRAND instructions in newer Intel CPUs but these are generally
untrusted as sole sources because of suspicions of NSA backdoors in the hardware

• Operating systems include facilities for PRNG typically drawing on multiple sources of pseudo-random numbers and
combining them

• UNIX-like systems have /dev/random and /dev/urandom which provide random numbers with different characteristics

• Windows has SystemPRNG (CNG-based) and ProcessPRNG (BCryptGenRandom-based) exposed via multiple libraries
with different characteristics in newer Windows versions, and CryptGenRandom in older Windows versions

• Consumer embedded systems like routers typically have weak PRNG because they tend to use the same sources with
the same starting values (seeds) every time they boot although this is improving

• Programming languages may include their own PRNG and may use operating system facilities to seed them

• There are add-on software packages to do PRNG, and hardware devices which can be added to systems that can
provide RNG

RNG Implementations

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

Tool
Samples

https://www.thisiswhyimbroke.com/the-ultimate-swiss-army-knife/

Simple examples
PRNGs in Linux

• /dev/random and /dev/urandom can provide a
stream of random bits

• /dev/urandom is high performance

• /dev/random is higher quality

• Variables like $RANDOM in shells

• rand(1) command

• random(3) system call for programs, various
programming languages have their own library
random number generation functionality

• openssl, hpenc, etc. can produce random numbers

echo $RANDOM
rand
dd if=/dev/urandom bs=1M count=1 of=/dev/null
openssl rand 1048576|dd of=/dev/null
hpenc -r -b 10M -c 100 |dd bs=10M of=/dev/null

A CLI tool for measuring entropy in data
ent

• Available as a standard package

• Provides several measurements

• Can display frequency tables

• Can provide indicators as to
randomness of data

• Can provide indicators of information
density

• Useful for cryptanalysis and forensics

man ent

man ent | ent

man ent | ent -c

man ent | caesar 3

man ent |
 caesar 3 |
 ent -c |
 awk '/^[0-9]/{print $2,$3}' |
 sort -nk 2 |
 tail 5

dd if=/dev/urandom bs=1M count=1 | ent

Part of the rng-tools package
rngtest

• Another program to evaluate the quality of a
random number source

• Runs tests from the FIPS140-2 standard

• Small numbers of what it calls failures are
acceptable (e.g. less than 10 for 10MB of random
data)

• The standard is from 2001, but still applicable to
government agency use approvals for software

• Installing the package also enables rngd, a
daemon whose purpose is to increase kernel
entropy availability

dd if=/dev/urandom bs=1M count=1 | rngtest
rngtest: entropy source drained
rngtest: bits received from input: 8388608
rngtest: FIPS 140-2 successes: 418
rngtest: FIPS 140-2 failures: 1
rngtest: FIPS 140-2(2001-10-10) Monobit: 0
rngtest: FIPS 140-2(2001-10-10) Poker: 0
rngtest: FIPS 140-2(2001-10-10) Runs: 1
rngtest: FIPS 140-2(2001-10-10) Long run: 0
rngtest: FIPS 140-2(2001-10-10) Continuous run: 0
rngtest: input channel speed: (min=2857142857.143; avg=16793587174.349; max=0.000)bits/s
rngtest: FIPS tests speed: (min=37.326; avg=72.537; max=79.473)Mibits/s
rngtest: Program run time: 119384 microseconds

An extensive RNG test suite
dieharder

• Produced by Robert G. Brown at Duke
University and actively maintained

• GPL license

• Can run a full set of tests or specific tests

• Full tests can take a long time

• Complete overkill for most users of crypto
tech

• Provides some of the high level testing
needed to uncover bad data sources, bad
algorithms, co-opted hardware

We need all those brilliant Belgian cryptographers to go “alright we know
that these encryption algorithms we are using today work, typically it is
the random number generators that are attacked as opposed to the
encryption algorithms themselves. How can we make them [secure], how
can we test them?”
 - Edward Snowden in 2014

https://blog.cryptographyengineering.com/2014/03/19/how-do-you-know-if-rng-is-working/

"... with Intel’s design ...
On the positive side, the presence of a PRNG means that the underlying RNG
circuit can get pretty borked (e.g., biased) without the results being
detectable by your application. On the negative side, the underlying RNG
circuit can get pretty borked without the results being detectable in your
application."
- Matthew Green, same blog article

Popular crypto swiss army knife
openssl

• openssl can perform many crypto tasks,
including PRNG

• Subcommand "rand" followed by how
much random data you want

• Not super fast but quite usable, decent
quality

• Seriously cross-platform

• Very large user community

openssl speed rand

openssl rand 1048576 | dd of=/dev/null

openssl rand 1048576 | ent

openssl rand 1048576 | rngtest

openssl rand 1048576 | dieharder -a

NETS1035 APPLIED CRYPTOGRAPHY - DENNIS SIMPSON ©2020

RNG
Creation

https://twitter.com/MarcSRousseau

DON'T
Your inability to imagine how to break your own creation is in no way a reflection of the abilities of others

